

# FM350-GL Hardware Guide \_General

Version: V1.0.6 Date: 2020-04-25



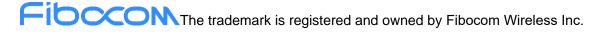


# **Applicability Type**

| No. | Product model | Description |
|-----|---------------|-------------|
| 1   | FM350-GL-00   | NA          |



## Copyright


Copyright © 2021 Fibocom Wireless Inc. All rights reserved.

Without the prior written permission of the copyright holder, any company or individual is prohibited to excerpt, copy any part of or the entire document, or distribute the document in any form.

#### **Notice**

The document is subject to update from time to time owing to the product version upgrade or other reasons. Unless otherwise specified, the document only serves as the user guide. All the statements, information and suggestions contained in the document do not constitute any explicit or implicit guarantee.

#### **Trademark**



FM350-GL Hardware Guide Page 3 of 67



# **Change History**

| Version | Author      | Date       | Remark                                                                                                                                                                                                        |  |
|---------|-------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| V1.0.6  | Lei Daijun  | 2021-4-25  | Section 2.2, split specification into two parts: 2.2.1 RF Characteristic(add modulation description) 2.2.2 Key Features                                                                                       |  |
| V1.0.5  | Ou Peng     | 2021-03-15 | <ul> <li>Section 3.5.4, modify USIM design requirement</li> <li>Add Section 6.5, M.2 Card Assembly</li> <li>Update NSA and LTE UL rate</li> <li>Update partial band 3GPP requirement and condition</li> </ul> |  |
| V1.0.4  | Xiao Dequan | 2021-02-06 | Update Phase2 feature                                                                                                                                                                                         |  |
| V1.0.3  | Lei Daijun  | 2020-11-11 | Update Power Sequence                                                                                                                                                                                         |  |
| V1.0.2  | Xiao Dequan | 2020-09-15 | <ul><li>Update n25, n30</li><li>Update PCle impedance requirement</li></ul>                                                                                                                                   |  |
| V1.0.1  | Lei Daijun  | 2020-6-30  | <ul> <li>Update pin definition</li> <li>Update FCPO# and RESET# recommended design</li> <li>Update WWAN M.2 module type configuration</li> </ul>                                                              |  |
| V1.0.0  | Lei Daijun  | 2020-4-30  | Draft version                                                                                                                                                                                                 |  |

FM350-GL Hardware Guide Page 4 of 67



# **Contents**

| 1 | Fore | eword   |                               | 8  |
|---|------|---------|-------------------------------|----|
|   | 1.1  | Int     | roduction                     | 8  |
|   | 1.2  | Re      | eference Standard             | 8  |
|   | 1.3  | Re      | elated Document               | 9  |
| 2 | Ove  | rview   |                               | 10 |
|   | 2.1  | Int     | roduction                     | 10 |
|   | 2.2  | Sp      | ecification                   | 10 |
|   |      | 2.2.1   | RF Characteristic             | 10 |
|   |      | 2.2.2   | Key Features                  | 11 |
|   | 2.3  | CA      | A Combinations                | 12 |
|   | 2.4  | Ар      | plication Block               | 14 |
|   | 2.5  | На      | ardware Block Diagram         | 14 |
|   | 2.6  | An      | tenna Configuration           | 15 |
| 3 | App  | licatio | on Interface                  | 16 |
|   | 3.1  | М.      | 2 Interface                   | 16 |
|   | •    | 3.1.1   | Pin Map                       | 16 |
|   | •    | 3.1.2   | Pin Definition                | 17 |
|   | 3.2  | Ро      | wer Supply                    | 21 |
|   | ,    | 3.2.1   | Power Supply                  | 22 |
|   | •    | 3.2.2   | Logic Level                   | 23 |
|   | •    | 3.2.3   | Power Consumption             | 23 |
|   | 3.3  | Co      | ontrol Signal                 | 26 |
|   |      | 3.3.1   | Module Start-Up               | 27 |
|   |      | 3.3     | .1.1 Start-up Circuit         | 27 |
|   |      | 3.3     | .1.2 Start-up Timing Sequence | 27 |
|   | •    | 3.3.2   | Module Shutdown               | 28 |
|   | •    | 3.3.3   | Module Reset                  | 29 |
|   | •    | 3.3.4   | PCIe Link State               | 31 |
|   |      | 3.3     | .4.1 D0 L1.2                  | 31 |
|   |      | 3.3     | .4.2 D3 <sub>cold</sub> L2    | 32 |
|   | ,    | 3.3.5   | Timing Application            | 33 |
|   | 3.4  | PC      | Cle Interface                 | 33 |
|   | •    | 3.4.1   | PCIe Interface Definition     | 33 |



|   |     | 3.4.2   | PCIe Ir    | nterface Application        | 34 |
|---|-----|---------|------------|-----------------------------|----|
|   | 3.5 | US      | SIM Inter  | face                        | 36 |
|   |     | 3.5.1   | USIM F     | Pins                        | 36 |
|   |     | 3.5.2   | USIM I     | nterface Circuit            | 36 |
|   |     | 3.5     | 5.2.1 N.O  | C. SIM Card Slot            | 36 |
|   |     | 3.5     | .2.2 N.0   | D. SIM Card Slot            | 37 |
|   |     | 3.5.3   | USIM F     | Hot-plug                    | 38 |
|   |     | 3.5.4   | USIM L     | Design                      | 38 |
|   | 3.6 | Sta     | atus Indi  | cator                       | 39 |
|   |     | 3.6.1   | LED#1      | Signal                      | 39 |
|   |     | 3.6.2   | WOW        | VAN#                        | 40 |
|   | 3.7 | Int     | errupt C   | ontrol                      | 40 |
|   |     | 3.7.1   | W_DIS      | ABLE1#                      | 41 |
|   |     | 3.7.2   | BODYS      | SAR                         | 41 |
|   | 3.8 | A۱      | NT Tunab   | ole Interface               | 41 |
|   | 3.9 | Co      | onfigurati | on Interface                | 42 |
| 4 | Rad | dio Fre | quency     | <sup>7</sup>                | 43 |
|   | 4.1 | RF      | Interfac   | e                           | 43 |
|   |     | 4.1.1   | RF Inte    | erface Functionality        | 43 |
|   |     | 4.1.2   | RF Coi     | nnector Characteristic      | 43 |
|   |     | 4.1.3   | RF Col     | nnector Dimension           | 44 |
|   |     | 4.1.4   | RF Coi     | nnector Assembly            | 45 |
|   | 4.2 | Op      | perating I | 3and                        | 47 |
|   | 4.3 | Tra     | ansmittin  | g Power                     | 49 |
|   | 4.4 | Re      | eceiver S  | ensitivity                  | 51 |
|   |     | 4.4.1   | Dual A     | ntenna Receiver Sensitivity | 51 |
|   |     | 4.4.2   | Four A     | ntenna Receiver Sensitivity | 53 |
|   | 4.5 | GN      | NSS        |                             | 55 |
|   | 4.6 | An      | itenna D   | esign                       | 56 |
| 5 | ES  | D Char  | acteris    | tics                        | 58 |
| 6 | Str | ucture  | Specifi    | cation                      | 59 |
|   | 6.1 | Pr      | oduct Ap   | pearance                    | 59 |
|   | 6.2 | Dii     | mension    | of Structure                | 59 |
|   | 6.3 | M.      | 2 Interfa  | ce Model                    | 60 |



| 6.4 | M.2   | Connector                                     | 61 |
|-----|-------|-----------------------------------------------|----|
| 6.5 | M.2   | Card Assembly                                 | 63 |
|     | 6.5.1 | Card Insertion                                | 63 |
|     | 6.5.2 | Mid-mount Connection with Single-Sided Module | 64 |
|     | 6.5.3 | Top-mount Connection with Single-Sided Module | 64 |
| 6.6 | Stor  | age                                           | 65 |
|     | 6.6.1 | Storage Life                                  | 65 |
| 6.7 | Pac   | king                                          | 65 |
|     | 6.7.1 | Tray Package                                  | 65 |
|     | 6.7.2 | Tray Size                                     | 67 |



# 1 Foreword

## 1.1 Introduction

The document describes the electrical characteristics, RF performance, dimensions and application environment, etc. of FM350-GL (hereinafter referred to as FM350). With the assistance of the document and other instructions, the developers can quickly understand the hardware functions of FM350 modules and develop products.

## 1.2 Reference Standard

The design of the product complies with the following standards:

- 3GPP TS 38.300 V15.5.0: 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; NR and NG-RAN Overall Description; Stage 2
- 3GPP TS 38.521-1 V15.2.0: User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Range 1 Standalone
- 3GPP TS 38.521-3 V15.2.0: User Equipment (UE) conformance specification; Radio transmission and reception; Part 3: Range 1 and Range 2 Interworking operation with other radios
- 3GPP TS 34.121-1 V8.11.0: User Equipment (UE) conformance specification; Radio transmission and reception (FDD); Part 1: Conformance specification
- 3GPP TS 34.122 V11.13.0: Technical Specification Group Radio Access Network; Radio transmission and reception (TDD)
- 3GPP TS 36.521-1 V14.0.0: User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Conformance testing
- 3GPP TS 21.111 V10.0.0: USIM and IC card requirements
- 3GPP TS 51.011 V4.15.0: Specification of the Subscriber Identity Module -Mobile Equipment (SIM-ME) interface
- 3GPP TS 31.102 V10.11.0: Characteristics of the Universal Subscriber Identity Module (USIM) application
- 3GPP TS 31.11 V10.16.0: Universal Subscriber Identity Module (USIM) Application Toolkit(USAT)
- 3GPP TS 36.124 V10.3.0: Electro Magnetic Compatibility (EMC) requirements for mobile terminals and ancillary equipment
- 3GPP TS 27.007 V10.0.8: AT command set for User Equipment (UE)
- 3GPP TS 27.005 V10.0.1: Use of Data Terminal Equipment Data Circuit terminating Equipment (DTE - DCE) interface for Short Message Service (SMS) and Cell Broadcast Service (CBS)
- PCI Express M.2 Specification Rev1.2



# 1.3 Related Document

• FIBOCOM Design Guide\_RF Antenna



# 2 Overview

## 2.1 Introduction

FM350 is a highly integrated 5G Sub-6 WWAN module which uses M.2 form factor interface. It supports NR/LTE /WCDMA systems and can be applied to most cellular networks of mobile carrier in the world.

# 2.2 Specification

## 2.2.1 RF Characteristic

FM350 RF characteristic is shown in Table 2-1:

Table 2-1 RF characteristic

| Operating Band    | Operating Band                                                     |  |  |  |  |
|-------------------|--------------------------------------------------------------------|--|--|--|--|
| NR Sub-6          | n1/2/3/5/7/8/20/25/28/30/38/40/41/48 <sup>1)</sup> /66/71/77/78/79 |  |  |  |  |
| FDD-LTE           | B1/2/3/4/5/7/8/12/13/14/17/18/19/20/25/26/28/29/30/32/66/71        |  |  |  |  |
| TDD-LTE           | B34/38/39/40/41/42/43/46/48                                        |  |  |  |  |
| UMTS/HSPA+        | B1/2/4/5/8                                                         |  |  |  |  |
| GNSS              | GPS/GLONASS/Galileo/BDS/QZSS                                       |  |  |  |  |
| Data Throughput   |                                                                    |  |  |  |  |
| Sub-6 SA          | DL 4.67Gbps/UL 1.25Gbps                                            |  |  |  |  |
| Sub-6 NSA         | DL 3.74Gbps/UL 835Mbps                                             |  |  |  |  |
| LTE               | DL 1.6Gbps (CAT19)/UL 211Mbps(CAT18)                               |  |  |  |  |
| LINATO/LIODA      | DL UMTS: 384 kbps/UL 384 kbps                                      |  |  |  |  |
| UMTS/HSPA+        | DL DC-HSPA+: 42 Mbps (CAT24)/UL 11.5 Mbps (CAT7)                   |  |  |  |  |
| Modulation Charac | cteristic                                                          |  |  |  |  |
|                   | 3GPP Release 15                                                    |  |  |  |  |
| NR Sub6           | 200MHz 2 DLCA, 256 QAM                                             |  |  |  |  |
| Modulation        | 200MHz 2 ULCA, 256 QAM                                             |  |  |  |  |
|                   | 15KHz/30KHz SCS for FDD/TDD                                        |  |  |  |  |
|                   | 3GPP Release 15                                                    |  |  |  |  |
| LTE Modulation    | 100MHz 5 DLCA, 256 QAM                                             |  |  |  |  |
|                   | 40MHz 2 ULCA, 256 QAM                                              |  |  |  |  |
| UMTS Modulation   | 3GPP Release 8                                                     |  |  |  |  |
| RF Characteristic |                                                                    |  |  |  |  |



| HPUE                | B41, n41/77 <sup>2</sup> /78/79                              |  |  |
|---------------------|--------------------------------------------------------------|--|--|
|                     | NR DL 4x4 MIMO: n1/2/3/7/25/30/38/40/41/48/66/77/78/79       |  |  |
| МІМО                | NR UL 2x2 MIMO: n41/77/78/79                                 |  |  |
|                     | LTE DL 4x4 MIMO: B1/2/3/4/7/25/30/34/38/39/40/41/42/43/48/66 |  |  |
| SRS                 | n41/77/78/79                                                 |  |  |
| SKS                 | 1T2R/1T4R/2T4R                                               |  |  |
|                     | NR: n1/2/3/7/25/30/38/40/41/48/66/77/78/79                   |  |  |
| TX Switching        | LTE: B1/2/3/4/7/25/30/34/38/39/40/41/42/43/48/66             |  |  |
|                     | UMTS/HSPA+: B1/2/4                                           |  |  |
| Carrier Aggregation |                                                              |  |  |
| Sub-6 SA            | DL 2CA, UL 2CA                                               |  |  |
| Sub-6 NSA           | DL LTE 5CA+ NR 1CA, LTE 3CA+ NR 2CA , UL LTE 2CA+ NR 1CA     |  |  |
| LTE DL 5CA, UL 2CA  |                                                              |  |  |

# 2.2.2 Key Features

Table 2-2 Key features

| Specification            | Specification                                                |  |  |  |  |
|--------------------------|--------------------------------------------------------------|--|--|--|--|
| CPU                      | MTK T700, 7nm process, ARM Cortex-A55, up to 1.5 GHz         |  |  |  |  |
| Memory                   | 4Gb LPDDRX4+4Gb NAND Flash                                   |  |  |  |  |
| Supported OS             | Windows 10/Chrome (Linux/Android)                            |  |  |  |  |
| Power Supply             | DC 3.135V to 4.4V, typical 3.3V                              |  |  |  |  |
|                          | Normal operating temperature: –10°C to +55°C                 |  |  |  |  |
| Temperature              | Extended operating temperature: –30°C to +75°C <sup>3)</sup> |  |  |  |  |
|                          | Storage temperature: –40°C to +85°C                          |  |  |  |  |
|                          | Interface: M.2 Key-B                                         |  |  |  |  |
| Physical Characteristics | Dimension: 30 x 52 x 2.3mm                                   |  |  |  |  |
|                          | Weight: 8g                                                   |  |  |  |  |
| Interface                |                                                              |  |  |  |  |
| Antenna Connector        | WWAN Antenna x 4                                             |  |  |  |  |
| Antenna Connector        | Support 4x4 MIMO                                             |  |  |  |  |
| Function Interface       | Dual SIM (one built-in eSIM), 1.8V/3V                        |  |  |  |  |

FM350-GL Hardware Guide Page 11 of 67



|                 | PCIe Gen3 x1              |
|-----------------|---------------------------|
|                 | USB 2.0 (For debug)       |
|                 | USB 3.1 Gen1 (Reserved)   |
|                 | W_Disable#                |
|                 | BodySAR                   |
|                 | LED                       |
|                 | Tunable antenna           |
|                 | I2C (Reserved)            |
|                 | UART (Reserved)           |
| Software        |                           |
| Protocol Stack  | IPV4/IPV6                 |
| AT Commands     | 3GPP TS 27.007 and 27.005 |
| Firmware Update | PCIe                      |
| Other Feature   | Multiple carrier          |
| Other reature   | Windows update            |



- 1) Disabled for FCC cannot certify currently, will enable in future after FCC can certify
- 2) n77 support HPUE only for FCC region application (cover 3.3–3.98GHz)
- 3) When temperature goes beyond normal operating temperature range of -10°C to +55°C, RF performance of module may be slightly off 3GPP specifications.

# 2.3 CA Combinations

| DL CA | DL CA Combinations       |     |  |  |  |
|-------|--------------------------|-----|--|--|--|
| 2CA   | Inter-band<br>Intra-band | TBD |  |  |  |



| DL CA C | DL CA Combinations       |     |  |  |  |
|---------|--------------------------|-----|--|--|--|
| 3CA     | Inter-band<br>Intra-band | TBD |  |  |  |
| 4CA     | Inter-band<br>Intra-band | TBD |  |  |  |
| 5CA     | Inter-band<br>Intra-band | TBD |  |  |  |
| NSA     | TBD                      | TBD |  |  |  |

FM350-GL Hardware Guide Page 13 of 67



# 2.4 Application Block

The peripheral applications for FM350 module are shown in Figure 2-1:

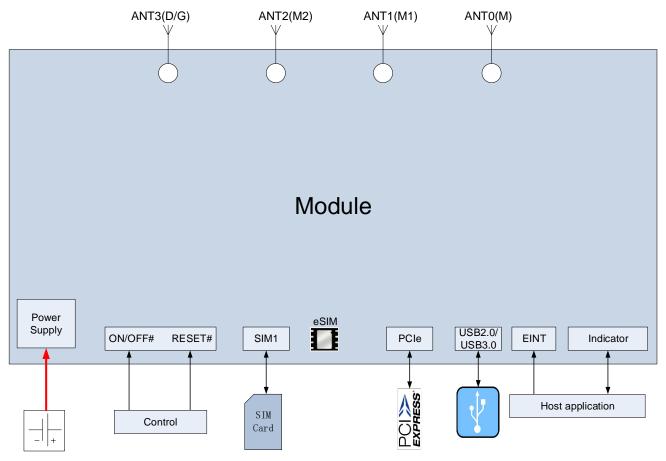



Figure 2-1 Application block

# 2.5 Hardware Block Diagram

The hardware block diagram in Figure 2-2 shows the main hardware functions of FM350 module, including base band and RF functions.

Baseband contains the followings:

- 5G NR/LTE/UMTS controller
- PMU
- MCP (NAND+LPDDR4 RAM)
- Application interface

RF contains the followings:

- RF Transceiver
- RF ET Power/PA
- RF PAMid/Front end
- RF SW
- RF Multi-plexer/Filter

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All Rights Reserved.

FM350-GL Hardware Guide Page 14 of 67



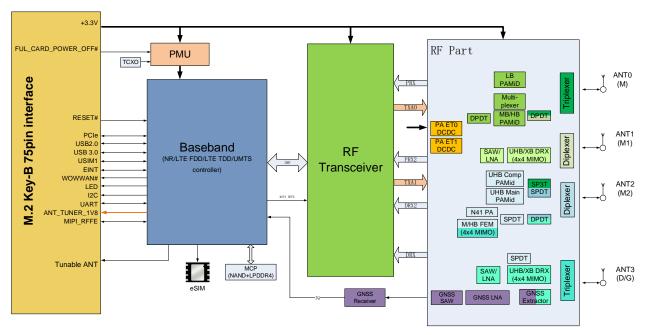



Figure 2-2 Hardware block diagram

# 2.6 Antenna Configuration

FM350 module supports four antennas and the configuration is as below table:

| Antenna Connector | Function Description     | Band Configuration           | Frequency Range (MHz) |
|-------------------|--------------------------|------------------------------|-----------------------|
| ANT0(M)           | Main antenna port for    | All supported bands transmit | 617~5925              |
| AIV I O(IVI)      | TRX and SRS              | & receive and SRS            | 017~3923              |
| ANT1(M1)          | Antenna port for RX and  | 4x4MIMO supported bands      | 1805~5000             |
| ANTI(WII)         | SRS                      | receive and SRS              | 1003~3000             |
| ANT2(M2)          | Antenna port for TRX and | Transmit, 4x4 MIMO receive   | 1452~5000             |
| ANTZ(WZ)          | SRS                      | and SRS                      | 1432~3000             |
| ANT3(D/G)         | Diversity & GNSS ANT     | All supported bands and      | 617~5925              |
| ANTS(D/G)         | and SRS                  | GNSS receive, SRS            | 017~3923              |

FM350-GL Hardware Guide Page 15 of 67



# 3 Application Interface

# 3.1 M.2 Interface

The FM350 module applies standard M.2 Key-B interface, with a total of 75 pins.

# 3.1.1 Pin Map

| 74 | +3.3V                                     | CONFIG_2      | 75 |
|----|-------------------------------------------|---------------|----|
| 72 | +3.3V                                     | VIO_CFG       | 73 |
| 70 | +3.3V                                     | GND           | 71 |
| 68 | NC NC                                     | CONFIG_1      | 69 |
| 66 | SIM1 DETECT(1.8V)                         | RESET#(1.8V)  | 67 |
| 64 | COEX_TXD(1.8V)                            | ANTCTL3(1.8V) | 65 |
| 62 | COEX_RXD(1.8V)                            | ANTCTL2(1.8V) | 63 |
| 60 | COEX3(1.8V)                               | ANTCTL1(1.8V) | 61 |
| 58 | RFE_RFFE_SDATA(1.8V)                      | ANTCTL0(1.8V) | 59 |
| 56 | RFE RFFE SCLK(1.8V)                       | GND           | 57 |
| 54 | PEWAKE# (3.3/1.8V)                        | REFCLKP       | 55 |
| 52 | CLKREQ# (3.3/1.8V)                        | REFCLKN       | 53 |
| 50 | PERST# (3.3/1.8V)                         | GND           | 51 |
| 48 | NC                                        | PERp0         | 49 |
| 46 | NC NC                                     | PERn0         | 47 |
| 44 | I2C IRQ#(1.8V)                            | GND           | 45 |
| 42 | I2C SDA(1.8V,I2C Master/Slave)            | PETp0         | 43 |
| 40 | I2C_SCL(1.8V,I2C Master/Slave)            | PETn0         | 41 |
| 38 | NC                                        | GND           | 39 |
| 36 | UIM1_PWR                                  | USB3.0-Rx+    | 37 |
| 34 | UIM1_DATA                                 | USB3.0-Rx=    | 35 |
| 32 | UIM1 CLK                                  | GND           | 33 |
| 30 | UIM1_RESET                                | USB3.0-Tx+    | 31 |
| 28 | UART RX(1.8V,mux for DPR2/GPIO)           | USB3.0-Tx =   | 29 |
| 26 | W DISABLE2#(3.3/1.8V)                     | GND           | 27 |
| 24 | ANT TUNER 1V8(1.8V, mux for GPIO)         | DPR(3.3/1.8V) | 25 |
| 22 | UART_TX(1.8V, mux for ANT_TUNER_CFG/GPIO) | WOWWAN#(1.8V) | 23 |
| 20 | GPIO(1.8V)                                | CONFIG_0      | 21 |
| 20 | Notch                                     | Notch         |    |
|    | Notch                                     | Notch         |    |
|    | Notch                                     | Notch         |    |
|    | Notch                                     | Notch         |    |
| 10 | LED1#(3.3V OD)                            | GND           | 11 |
| 8  | W_DISABLE1#(3.3/1.8V)                     | USB D-        | 9  |
| 6  | FULL_CARD_POWER_OFF#(3.3/1.8V)            | USB D+        | 7  |
| 4  | +3.3V                                     | GND           | 5  |
| 2  | +3.3V                                     | GND           | 3  |
|    | -5.5V                                     | CONFIG_3      | 1  |

Figure 3-1 Pin Map



#### Note:

Pin "Notch" represents the gap of the gold fingers.



## 3.1.2 Pin Definition

The pin definition is as below table:

| Pin | Pin Name                 | I/O | Reset Value | Pin Description                                                                         | Level        |
|-----|--------------------------|-----|-------------|-----------------------------------------------------------------------------------------|--------------|
|     |                          |     |             | NC, FM350 M.2 module is configured as                                                   |              |
| 1   | CONFIG_3                 | 0   | NC          | the WWAN - PCIe Gen3, USB3.1 Gen1                                                       | -            |
|     |                          |     |             | interface type                                                                          |              |
| 2   | +3.3V                    | PI  | -           | Power input                                                                             | Power Supply |
| 3   | GND                      | -   | -           | GND                                                                                     | Power Supply |
| 4   | +3.3V                    | PI  | -           | Power input                                                                             | Power Supply |
| 5   | GND                      | -   | -           | GND                                                                                     | Power Supply |
| 6   | FULL_CARD_<br>POWER_OFF# | I   | PU          | Power enable, module power on input, internal pull up(350K $\Omega$ )                   | 3.3/1.8V     |
| 7   | USB D+                   | I/O | -           | USB data plus                                                                           | 0.33V        |
| 8   | W_DISABLE1#              | I   | PD          | WWAN disable, active low                                                                | 3.3/1.8V     |
| 9   | USB D-                   | I/O | -           | USB data minus                                                                          | 0.33V        |
| 10  | LED1#                    | OD  | Т           | System status LED, output open drain, 3.3V                                              | 3.3V         |
| 11  | GND                      | -   | -           | GND                                                                                     | Power Supply |
| 12  | Notch                    |     |             | Notch                                                                                   |              |
| 13  | Notch                    |     |             | Notch                                                                                   |              |
| 14  | Notch                    |     |             | Notch                                                                                   |              |
| 15  | Notch                    |     |             | Notch                                                                                   |              |
| 16  | Notch                    |     |             | Notch                                                                                   |              |
| 17  | Notch                    |     |             | Notch                                                                                   |              |
| 18  | Notch                    |     |             | Notch                                                                                   |              |
| 19  | Notch                    |     |             | Notch                                                                                   |              |
| 20  | GPIO                     | I/O | PD          | GPIO.<br>Reserved                                                                       | 1.8V         |
| 21  | CONFIG_0                 | 0   | NC          | GND, FM350 M.2 module is configured as the WWAN – PCIe Gen3, USB3.1 Gen1 interface type | -            |
| 22  | UART_TX                  | O   | PD          | UART TXD output, can mux as ANT_TUNER_CFG or GPIO. Reserved                             | 1.8V         |



| Pin | Pin Name      | I/O | Reset Value | Pin Description                                                  | Level        |
|-----|---------------|-----|-------------|------------------------------------------------------------------|--------------|
| 23  | WOWWAN#       | 0   | PD          | Wake up host, Reserved                                           | 1.8V         |
| 24  | ANT_TUNER_1V8 | 0   | PD          | 1.8V power output for antenna tuner, can mux as GPIO. Reserved   | 1.8V         |
| 25  | DPR           | I   | PD          | Dynamic power reduction - Body SAR control signal (SAR_BACK_OFF) | 3.3/1.8V     |
| 26  | W_DISABLE2#   | I   | PD          | GNSS disable, active low, Reserved                               | 3.3/1.8V     |
| 27  | GND           | -   | -           | GND                                                              | Power Supply |
| 28  | UART_RX       | I   | PD          | UART RXD input, can mux as DPR2 or GPIO. Reserved                | 1.8V         |
| 29  | USB3.0_TX-    | 0   | -           | USB3.0 transmit data minus, reserved                             | -            |
| 30  | UIM_RESET     | 0   | PD          | SIM reset signal                                                 | 1.8V/3V      |
| 31  | USB3.0_TX+    | 0   | -           | USB3.0 transmit data plus, reserved                              | -            |
| 32  | UIM_CLK       | 0   | PD          | SIM clock Signal                                                 | 1.8V/3V      |
| 33  | GND           | -   | -           | GND                                                              | Power Supply |
| 34  | UIM_DATA      | I/O | PD          | SIM data input/output                                            | 1.8V/3V      |
| 35  | USB3.0_RX-    | I   | -           | USB3.0 receive data minus, reserved                              | -            |
| 36  | UIM_PWR       | 0   | -           | SIM power supply, 1.8V/3V                                        | 1.8V/3V      |
| 37  | USB3.0_RX+    | I   | -           | USB3.0 receive data plus, reserved                               | -            |
| 38  | NC            |     | -           | NC                                                               | -            |
| 39  | GND           | -   | -           | GND                                                              | Power Supply |
| 40  | I2C_SCL       | 0   | PU          | I2C master clock                                                 | 1.8V         |
| 41  | PETn0         | 0   | -           | PCIe TX differential signals negative                            | -            |
| 42  | I2C_SDA       | I/O | PU          | I2C master data                                                  | 1.8V         |
| 43  | PETp0         | 0   | -           | PCIe TX differential signals positive                            | -            |
| 44  | I2C_IRQ#      | I   | PU          | I2C interrupt request                                            | 1.8V         |
| 45  | GND           | -   | -           | GND                                                              | Power Supply |
| 46  | NC            | -   | -           | -                                                                | -            |
| 47  | PERn0         | I   | -           | PCIe RX differential signals negative                            | -            |



| Pin | Pin Name   | I/O | Reset Value | Pin Description                             | Level        |
|-----|------------|-----|-------------|---------------------------------------------|--------------|
| 48  | NC         | -   | -           | -                                           | -            |
| 49  | PERp0      | I   | -           | PCIe RX differential signals positive       | -            |
|     |            |     |             | Asserted to reset module PCIe interface     |              |
|     |            |     |             | default. If module went into core dump, it  |              |
| 50  | PERST#     | I   | PU          | will reset whole module, not only PCIe      | 3.3/1.8V     |
|     |            |     |             | interface.                                  |              |
|     |            |     |             | Active low, internal pull up(10K $\Omega$ ) |              |
| 51  | GND        | -   | -           | GND                                         | Power Supply |
|     |            |     |             | Asserted by device to request a PCIe        |              |
|     |            |     |             | reference clock be available (active clock  |              |
|     |            |     |             | state) in order to transmit data. It also   |              |
| 50  | OLKBEO#    | 1/0 | PD          | used by L1 PM Sub states mechanism,         | 2.2/4.0)/    |
| 52  | CLKREQ#    | I/O |             | asserted by either host or device to        | 3.3/1.8V     |
|     |            |     |             | initiate an L1 exit.                        |              |
|     |            |     |             | Active low, open drain output and should    |              |
|     |            |     |             | add external pull up on platform            |              |
| 50  | REFCLKN    |     |             | PCIe reference clock signal                 |              |
| 53  | REFOLKIN   | '   | -           | Negative                                    | -            |
|     |            |     |             | Asserted to wake up system and              |              |
|     |            |     |             | reactivate PCIe link from L2 to L0, it      |              |
| 54  | PEWAKE#    | 0   | Т           | depends on system                           | 3.3/1.8V     |
| 34  | I LVVAIL#  |     |             | whether supports wake up functionality.     | 3.3/1.0 V    |
|     |            |     |             | Active low, open drain output and should    |              |
|     |            |     |             | add external pull up on platform            |              |
| 55  | REFCLKP    | ı   | _           | PCIe reference clock signal                 | _            |
|     | The second | •   |             | Positive                                    |              |
| 56  | RFFE_SCLK  | 0   | PD          | MIPI interface tunable ANT,                 | 1.8V         |
|     | L. L_OOLK  |     |             | RFFE clock                                  | 1.0 v        |
| 57  | GND        |     |             | GND                                         | Power Supply |
| 58  | RFFE_SDATA | I/O | PD          | MIPI interface tunable ANT,                 | 1.8V         |
|     |            |     |             | RFFE data                                   | 1.0 v        |
| 59  | ANTCTL0    | 0   | PD          | Tunable ANT CTRL0                           | 1.8V         |
|     |            |     |             | Wireless coexistence between WWAN           |              |
| 60  | COEX3      | I/O | PD          | and WiFi/BT modules, based on BT-SIG        | 1.8\/        |
| 00  | OOLAS      | 1,0 | ט אט        | coexistence protocol. COEX_EXT_FTA,         | 1.8V         |
|     |            |     |             | Reserved                                    |              |



| Pin | Pin Name    | I/O | Reset Value | Pin Description                                                                                                                               | Level        |
|-----|-------------|-----|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 61  | ANTCTL1     | 0   | PD          | Tunable ANT CTRL1                                                                                                                             | 1.8V         |
| 62  | COEX_RXD    | I   | PD          | Wireless coexistence between WWAN and WiFi/BT modules, based on BT-SIG coexistence protocol. UART receive signal(WWAN module side), Reserved  | 1.8V         |
| 63  | ANTCTL2     | 0   | PD          | Tunable ANT CTRL2                                                                                                                             | 1.8V         |
| 64  | COEX_TXD    | 0   | PD          | Wireless coexistence between WWAN and WiFi/BT modules, based on BT-SIG coexistence protocol. UART transmit signal(WWAN module side), Reserved | 1.8V         |
| 65  | ANTCTL3     | 0   | PD          | Tunable ANT CTRL3                                                                                                                             | 1.8V         |
| 66  | SIM1_DETECT | 1   | PU          | SIM1 detect, internal pull up(390K $\Omega$ ), active high                                                                                    | 1.8V         |
| 67  | RESET#      | ı   | PU          | WWAN reset input, active low, internal pull up(350KΩ)                                                                                         | 1.8V         |
| 68  | NC          | -   | -           | NC                                                                                                                                            | -            |
| 69  | CONFIG_1    | 0   | GND         | GND, FM350 M.2 module is configured as the WWAN – PCIe Gen3, USB3.1 Gen1 interface type                                                       | -            |
| 70  | +3.3V       | PI  | -           | Power input                                                                                                                                   | Power Supply |
| 71  | GND         | -   | -           | GND                                                                                                                                           | Power Supply |
| 72  | +3.3V       | PI  | -           | Power input                                                                                                                                   | Power Supply |
| 73  | VIO_CFG     | -   | NC          | Configuration of PCIe sideband signals power domain NC: support 1.8V/3.3V; GND: support 3.3V                                                  | -            |
| 74  | +3.3V       | PI  | -           | Power input                                                                                                                                   | Power Supply |
| 75  | CONFIG_2    | 0   | NC          | GND, FM350 M.2 module is configured as the WWAN – PCIe Gen3, USB3.1 Gen1 interface type                                                       | -            |

FM350-GL Hardware Guide Page 20 of 67



Reset Value: The initial status after module reset, not the status when working.

H: High Voltage LevelL: Low Voltage Level

PD: Pull-Down
PU: Pull-Up
T: Tristate

OD: Open Drain
PI: Power Input
PO: Power Output



#### Note:

Digital IO pins cannot be connected to power directly.

The unused pins can be left floating.

# 3.2 Power Supply

The power interface of FM350 module as shown in the following table:

|                  |          |     |                    | DC Parame        | eter (V)         |                  |
|------------------|----------|-----|--------------------|------------------|------------------|------------------|
| Pin              | Pin Name | I/O | Pin Description    | Minimum<br>Value | Typical<br>Value | Maximum<br>Value |
| 2, 4, 70, 72, 74 | +3.3V    | PI  | Power supply input | 3.135            | 3.3              | 4.4              |
| 36               | UIM_PWR  | РО  | USIM power supply  | -                | 1.8V/3V          | -                |

The Power rating table is as below table:

| Pin              | Pin Name | I/O | Pin Description    | Current Consumption Limit Max Avg (mA) |
|------------------|----------|-----|--------------------|----------------------------------------|
| 2, 4, 70, 72, 74 | +3.3V    | PI  | Power supply input | 3500                                   |
| 36               | UIM_PWR  | РО  | USIM power supply  | 200                                    |

FM350 module uses PCIe interface, according to the PCIe specification, the PCIe Vmain should be used as the +3.3V power source, not the Vaux. The Vaux is the PCIe backup power source and it is not sufficient as the power supply. In addition, the DC/DC power supply other than PCIe ports should not be used as the external power cannot control the module status through the PCIe protocol.



## 3.2.1 Power Supply

The FM350 module should be powered through the +3.3V pins, and the power supply design is shown in Figure 3-2:

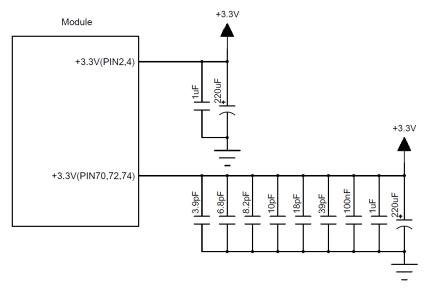



Figure 3-2 Power supply design

The filter capacitor design for power supply as shown in the following table:

| Recommended capacitance               | Application                                                  | Description                                                                                                                                                                                                                                                              |
|---------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 220uF x 2                             | Voltage-stabilizing capacitors                               | <ul> <li>Reduce power fluctuations of the module in operation, requiring capacitors with low ESR.</li> <li>LDO or DC/DC power supply requires the capacitor of no less than 440uF</li> <li>The capacitor for battery power supply can be reduced to 100~200uF</li> </ul> |
| 1uF, 100nF                            | Digital signal noise                                         | Filter out the interference generated from the clock and digital signals                                                                                                                                                                                                 |
| 39pF, 33pF                            | 700/800, 850/900 MHz frequency band                          | Filter out low frequency band RF interference                                                                                                                                                                                                                            |
| 18pF, 10pF,<br>8.2pF, 6.8pF,<br>3.9pF | 1500/1800, 2100/2300,<br>2600MHz, 3500/3600/3700MHz,<br>5GHz | Filter out medium/high frequency band RF interference                                                                                                                                                                                                                    |

The stable power supply can ensure the normal operation of FM350 module; and the ripple of the power supply should be less than 300mV in design. Module supports 5G NR Sub-6 download, when module operates with the maximum data transfer throughput, the peak current can reach to upper 3500mA. It



requests the power source voltage should not be lower than 3.135V, otherwise module may shut down or restart. The power supply requirement is shown in Figure 3-3:

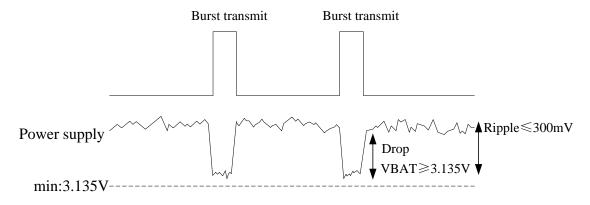



Figure 3-3 Power supply requirement

## 3.2.2 Logic Level

The FM350 module 1.8V logic level definition is shown in the following table:

| Parameters           | Minimum | Typical | Maximum | Unit |
|----------------------|---------|---------|---------|------|
| 1.8V logic level     | 1.71    | 1.8     | 1.89    | V    |
| VIH                  | 1.3     | 1.8     | 1.89    | V    |
| V <sub>IL</sub> @1mA | -0.3    | 0       | 0.3     | V    |

The FM350 module 3.3V logic level definition is shown in the following table:

| Parameters           | Minimum | Typical | Maximum | Unit |
|----------------------|---------|---------|---------|------|
| 3.3V logic level     | 3.135   | 3.3     | 3.465   | V    |
| VIH                  | 2.3     | 3.3     | 3.465   | V    |
| V <sub>IL</sub> @1mA | -0.3    | 0       | 0.3     | V    |

# 3.2.3 Power Consumption

In the condition of 3.3V power supply, the FM350 power consumption is shown in the following table:

| Parameter          | Mode      | Condition                      | Average<br>Current<br>(mA) |
|--------------------|-----------|--------------------------------|----------------------------|
| l <sub>off</sub>   | Power off | Power supply, module power off | TBD                        |
| I <sub>Sleep</sub> | WCDMA     | DRX=8                          | TBD                        |

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All Rights Reserved.

FM350-GL Hardware Guide Page 23 of 67



| Parameter  | Mode      | Condition                                  | Average<br>Current<br>(mA) |
|------------|-----------|--------------------------------------------|----------------------------|
|            | LTE FDD   | Paging cycle #128 frames (1.28s DRx cycle) | TBD                        |
|            | LTE TDD   | Paging cycle #128 frames (1.28s DRx cycle) | TBD                        |
|            | NR        | Paging cycle #128 frames (1.28s DRx cycle) | TBD                        |
|            | Radio Off | AT+CFUN=4, flight mode                     | TBD                        |
|            |           | Band1                                      | TBD                        |
|            |           | Band2                                      | TBD                        |
| Iwcdma-rms | WCDMA     | Band4                                      | TBD                        |
|            |           | Band5                                      | TBD                        |
|            |           | Band8                                      | TBD                        |
|            |           | Band1                                      | TBD                        |
|            |           | Band2                                      | TBD                        |
|            |           | Band3                                      | TBD                        |
|            |           | Band4                                      | TBD                        |
|            |           | Band5                                      | TBD                        |
|            |           | Band7                                      | TBD                        |
|            |           | Band8                                      | TBD                        |
|            | . == ===  | Band12                                     | TBD                        |
| LTE-RMS    | LTE FDD   | Band13                                     | TBD                        |
|            |           | Band14                                     | TBD                        |
|            |           | Band17                                     | TBD                        |
|            |           | Band18                                     | TBD                        |
|            |           | Band19                                     | TBD                        |
|            |           | Band20                                     | TBD                        |
|            |           | Band25                                     | TBD                        |
|            |           | Band26                                     | TBD                        |



| Parameter | Mode    | Condition | Average<br>Current<br>(mA) |
|-----------|---------|-----------|----------------------------|
|           |         | Band28    | TBD                        |
|           |         | Band30    | TBD                        |
|           |         | Band66    | TBD                        |
|           |         | Band71    | TBD                        |
|           |         | Band34    | TBD                        |
|           |         | Band38    | TBD                        |
|           |         | Band39    | TBD                        |
|           | LTE TOD | Band40    | TBD                        |
|           | LTE TDD | Band41    | TBD                        |
|           |         | Band42    | TBD                        |
|           |         | Band43    | TBD                        |
|           |         | Band48    | TBD                        |
|           |         | n1        | TBD                        |
|           |         | n2        | TBD                        |
|           |         | n3        | TBD                        |
|           |         | n5        | TBD                        |
|           |         | n7        | TBD                        |
|           |         | n8        | TBD                        |
| NR-RMS    | NR      | n20       | TBD                        |
|           |         | n25       | TBD                        |
|           |         | n28       | TBD                        |
|           |         | n30       | TBD                        |
|           |         | n38       | TBD                        |
|           |         | n40       | TBD                        |
|           |         | n41       | TBD                        |
|           |         |           |                            |



| Parameter | Mode | Condition | Average<br>Current<br>(mA) |
|-----------|------|-----------|----------------------------|
|           |      | n48       | TBD                        |
|           |      | n66       | TBD                        |
|           |      | n71       | TBD                        |
|           |      | n77       | TBD                        |
|           |      | n78       | TBD                        |
|           |      | n79       | TBD                        |



#### Note:

The above data is the average value obtained by testing the sample for high/medium/low channels.

In 5CA/NSA combination, the FM350 power consumption is shown in the following table:

#### **TBD**



#### Note:

The data above is an average value tested on some samples at 25°C temperature.

# 3.3 Control Signal

The FM350 module provides two control signals for power on/off and reset operations. The pin is defined in the following table:

| Pin | Pin Name                 | I/O | Reset Value | Function                                                                                                                                                                | Level    |
|-----|--------------------------|-----|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 6   | FULL_CARD_POWER<br>_OFF# | I   | PU          | Module power on/off input, internal pull up(350KΩ) Power on: High/Floating Power off: Low                                                                               | 3.3/1.8V |
| 67  | RESET#                   | I   | PU          | WWAN reset input, active low, internal pull up(350K $\Omega$ )                                                                                                          | 1.8V     |
| 50  | PERST#                   | I   | PU          | Asserted to reset module PCIe interface default. If module went into core dump, it will reset whole module, not only PCIe interface. Active low, internal pull up(10KΩ) | 3.3/1.8V |





#### Note:

RESET# and PERST# need to be controlled by independent GPIO, and not shared with other devices on the host. RESET# and PERST# are sensitive signals, so they should keep away from RF interference and be protected by GND. It should be neither near PCB edge nor route on surface layer to avoid module abnormal reset caused by ESD.

## 3.3.1 Module Start-Up

#### 3.3.1.1 Start-up Circuit

The FCPO# (FULL\_CARD\_POWER\_OFF #) pin needs an external 3.3V or 1.8V pull up for booting up. AP (Application Processor) controls the module start-up. The recommended design is using a default PD port to control FCPO#. It also should reserve a 100K pull down resistor on AP side. The circuit design is shown in Figure 3-4:

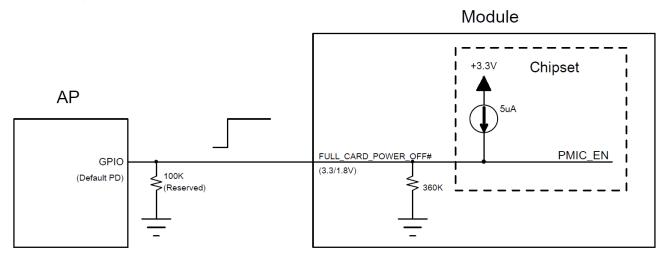



Figure 3-4 Circuit for module start-up controlled by AP

#### 3.3.1.2 Start-up Timing Sequence

When power supply is ready, the PMU of module will power on and start initialization process by pulling high FCPO# signal. After about 20s, module will complete initialization process. The start-up timing is shown in Figure 3-5:



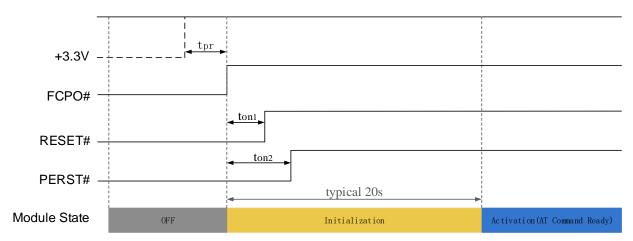



Figure 3-5 Timing control for start-up

| Index            | Min. | Recommended | Max. | Comments                                                                                                 |
|------------------|------|-------------|------|----------------------------------------------------------------------------------------------------------|
| t <sub>pr</sub>  | 0ms  | -           | -    | The delay time of power supply rising from 0V up to 3.3V.If power supply always ready, it can be ignored |
| t <sub>on1</sub> | 20ms | 20ms        | -    | RESET# should be de-asserted after FCPO#                                                                 |
| t <sub>on2</sub> | 50ms | 100ms       | -    | The time delay of PERST# de-asserted after FCPO#, PERST# must always be the last to get de-asserted      |

The minimum detection time of PCIe link is about 23ms after PERST# de-asserted.

### 3.3.2 Module Shutdown

Module can be shut down by following control:

| Shutdown Control | Action                     | Condition                                 |
|------------------|----------------------------|-------------------------------------------|
| Software         | Sending AT+CPWROFF command | Normal shutdown (recommend)               |
|                  |                            | Only used when a hardware exception       |
| Hardware         | Pull down FCPO# pin        | occurs and the software control cannot be |
|                  |                            | used.                                     |

Module can be shut down by sending AT+CPWROFF command. When the module receives the software shutdown command, the module will start the finalization process (the reverse process of initialization), and it will be completed after  $t_{sd}$  time ( $t_{sd}$  is the time which AP receive OK of "AT+CPWROFF", if there is no response, the max  $t_{sd}$  is 5s). In the finalization process, the module will save the network, SIM card and some other parameters from memory, then clear the memory and shut down PMU. The control timing is shown in Figure 3-6:

FM350-GL Hardware Guide Page 28 of 67



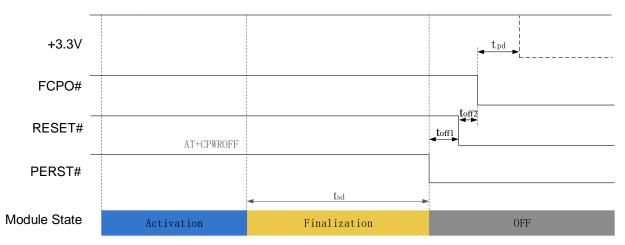



Figure 3-6 Shutdown timing control

| Index             | Min. | Recommended | Max. | Comments                                                                           |
|-------------------|------|-------------|------|------------------------------------------------------------------------------------|
| t <sub>off1</sub> | 16ms | 20ms        | -    | RESET# should be asserted after PERST#                                             |
| t <sub>off2</sub> | 2ms  | 10ms        | -    | FCPO# should be asserted after RESET#                                              |
| t <sub>pd</sub>   | 10ms | 100ms       | -    | +3.3V power supply goes down time. If power supply is always on, it can be ignored |

## 3.3.3 Module Reset

The FM350 module can reset to its initial status by pulling down the RESET# signal for more than 2ms (10ms is recommended), and module will restart after RESET# signal is released. When customer executes RESET# function, the PMU remains its power inside the module. The recommended circuit design is shown in the Figure 3-7:

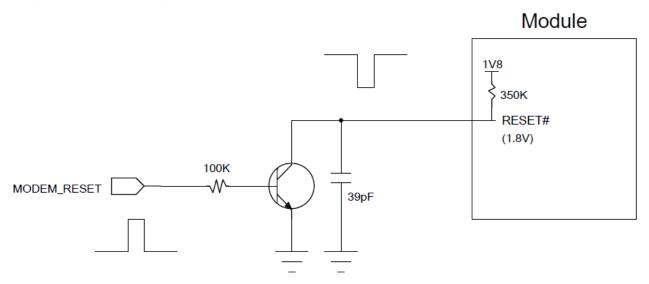



Figure 3-7 Recommended design for reset circuit

Page 29 of 67



There are two reset control timings as below:

- Reset timing 1<sup>st</sup> in Figure 3-8, PMU of module internal always on in reset sequence, recommend using in FW upgrade and module recovery;
- Reset timing 2<sup>nd</sup> in Figure 3-9, PMU of module internal will be off in reset sequence (including whole power off and power on sequence, t<sub>sd</sub> can refer section 3.3.2), recommend using in system warm boot.

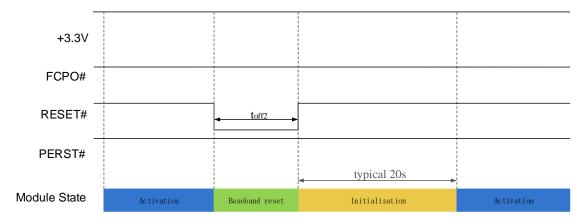



Figure 3-8 Reset control timing1st

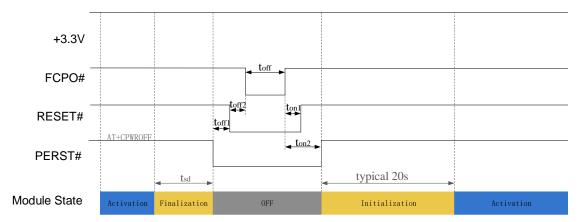



Figure 3-9 Reset control timing2nd

| Index             | Min.  | Recommended | Max. | Comments                                                                                                                                                                   |
|-------------------|-------|-------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t <sub>off1</sub> | 16ms  | 20ms        | -    | RESET# should be asserted after PERST#, refer section 3.3.2                                                                                                                |
| t <sub>off2</sub> | 2ms   | 10ms        | -    | FCPO# should be asserted after RESET#, refer section 3.3.2                                                                                                                 |
| t <sub>off</sub>  | 500ms | 500ms       | -    | Time to allow the WWAN module to fully discharge any residual voltages before the pin could be de-asserted again. This is required for both Pre-OS as well as Runtime flow |



| Index            | Min. | Recommended | Max. | Comments                                                                                                                   |
|------------------|------|-------------|------|----------------------------------------------------------------------------------------------------------------------------|
| t <sub>on1</sub> | 20ms | 20ms        | -    | RESET# should be de-asserted after FCPO#, refer section 3.3.1.2                                                            |
| t <sub>on2</sub> | 50ms | 100ms       | -    | The time delay of PERST# de-asserted after FCPO#, PERST# must always be the last to get de-asserted, refer section 3.3.1.2 |

#### 3.3.4 PCle Link State

Modem has the lowest power consumption in D0 L1.2 PCle link state, D3cold L2 will increase extra about TBD power consumption. CLKREQ# can assert or de-assert in D3cold L2, but CLKREQ# shouldn't be changed again during D3cold L2. When CLKREQ# asserts in D3cold L2, it will increase extra TBD power consumption compared with CLKREQ# de-asserted in D3cold L2, we recommend keep CLKREQ# de-asserted in D3cold L2.

| PCle Link State | PERST# | CLKREQ# | Power Consumption (mA)  | Description                                    |
|-----------------|--------|---------|-------------------------|------------------------------------------------|
| D0 L1.2         | Н      | Н       | I <sub>sleep</sub>      | Refer 3.2.3 Power Consumption                  |
|                 | L      | н       | I <sub>sleep</sub> +TBD | The extra TBD is consumed on PERST# pull down  |
| D3cold L2       | L      | L       | I <sub>sleep</sub> +TBD | The extra TBD is consumed on CLKREQ# pull down |

#### 3.3.4.1 D0 L1.2

Module supports PCIe goes into D0 L1.2 state in Win10 OS. The D0 L0@S0/S0ix→ D0 L1.2@S0/S0ix→D0 L0@S0/S0ix timing is shown in figure 3-10:

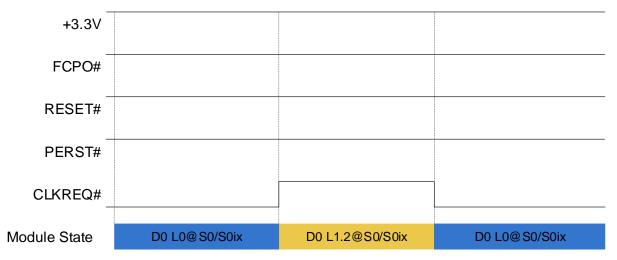



Figure 3-10 D0 L1.2 timing



#### 3.3.4.2 D3cold L2

Module supports PCIe goes into D3<sub>cold</sub> L2 state in Win10 system. In D3<sub>cold</sub> L2 state, PCIe link can be wakeup by both modem and host. The D0 L0@S0/S0ix→D3<sub>cold</sub> L2@S0/S0ix→D0 L0@S0/S0ix timing is shown in Figure 3-11 and Figure 3-12:

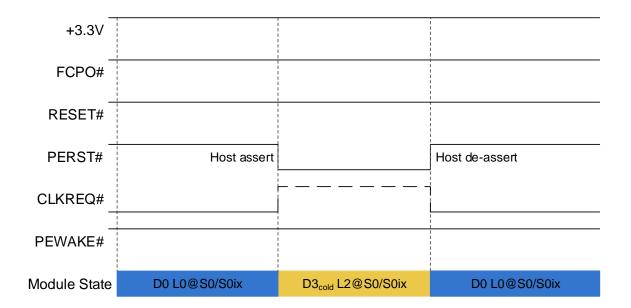



Figure 3-11 D3cold L2 timing (host wakeup)

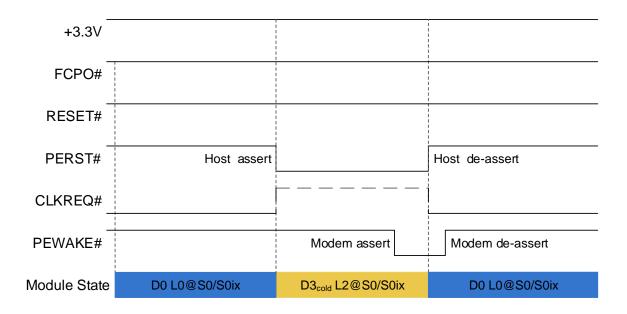



Figure 3-12 D3<sub>cold</sub> L2 timing (modem wakeup)



## 3.3.5 Timing Application

The recommended timing application in Win10 OS is as below table:

| System status   |                          | Timing Application                                              |
|-----------------|--------------------------|-----------------------------------------------------------------|
| S0ix            | D0 L1.2                  | Refer to section 3.3.4.1 Figure 3-10 D0 L1.2 Timing             |
| (Modem standby) | D3 <sub>cold</sub> L2    | Refer to section 3.3.4.2 Figure 3-11/3-12 D3cold L2 timing      |
| S3, S4, S5      | Power on (back to S0)    | Refer to section 3.3.1.2 Figure 3-5 Timing control for start-up |
| 33, 34, 33      | Power off<br>(out of S0) | Refer to section 3.3.2 Figure 3-6 Software power off timing     |
| G3 boot         | Power on                 | Refer to section 3.3.1.2 Figure 3-5 Timing control for start-up |
| Warm boot       |                          | Refer to section 3.3.3 Figure 3-9 Reset timing 2 <sup>nd</sup>  |
| Modem FW upgrad | de / Modem               | Refer to section 3.3.3 Figure 3-8 Reset timing 1st              |

# 3.4 PCle Interface

FM350 module supports PCIe as IPC interface for data transfer. The PCIe supports Gen3, one lane for data transmission channel, it is also compatible with PCIe Gen2 and Gen1. BIOS configuration must follow X86 platform BKC (Best Know Configuration) reference design.

PCIe interface initialized with host driver, then mapped MBIM & GNSS port in Win10 OS and RMNET & AT port in Chrome/Linux/Android OS. The MBIM and RMNET interfaces are used for data transfer, GNSS port is used for receiving GNSS data, AT port is used for AT command.

### 3.4.1 PCIe Interface Definition

PCle interface is defined as below table:

| Pin# | Pin Name | I/O | Reset Value | Description                             | Level |
|------|----------|-----|-------------|-----------------------------------------|-------|
| 41   | PETn0    | 0   | -           | PCIe TX Differential signals, negative  | -     |
| 43   | PETP0    | 0   | -           | PCIe TX Differential signals, positive  | -     |
| 47   | PERn0    | I   | -           | PCIe RX Differential signals, negative  | -     |
| 49   | PERP0    | I   | -           | PCIe RX Differential signals, positive  | -     |
| 53   | REFCLKN  | I   | -           | PCIe Reference Clock signal<br>Negative | -     |



| Pin# | Pin Name | I/O | Reset Value | Description                                                                                                                                                                                                                                                                                       | Level    |
|------|----------|-----|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 55   | REFCLKP  | I   | -           | PCIe Reference Clock signal<br>Positive                                                                                                                                                                                                                                                           | -        |
| 50   | PERST#   | I   | PU          | Asserted to reset module PCIe interface default. If module went into coredump, it will reset whole module, not only PCIe interface. Active low, internal pull up( $10K\Omega$ )                                                                                                                   | 3.3/1.8V |
| 52   | CLKREQ#  | I/O | PD          | Asserted by device to request a PCIe reference clock be available (active clock state) in order to transmit data. It also used by L1 PM Sub states mechanism, asserted by either host or device to initiate an L1 exit. Active low, open drain output and should add external pull up on platform | 3.3/1.8V |
| 54   | PEWAKE#  | 0   | Т           | Asserted to wake up system and reactivate PCIe link from L2 to L0, it depends on system whether supports wake up functionality. Active low, open drain output and should add external pull up on platform                                                                                         | 3.3/1.8V |

# 3.4.2 PCIe Interface Application

The reference circuit is shown in Figure 3-13:

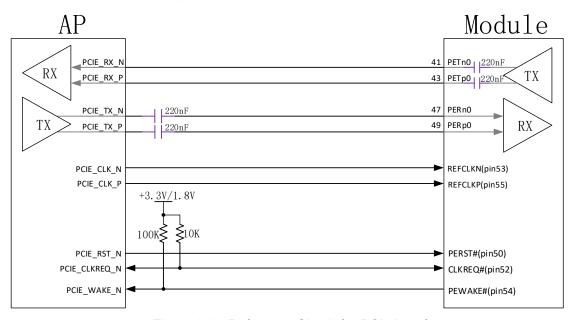



Figure 3-13 Reference Circuit for PCIe Interface

FM350 module supports PCIe Gen3/one lane, including three difference pairs: transmit pair TXP/N, receiving pair RXP/N and clock pair CLKP/N.

PCIe can achieve the maximum transmission rate of 8 GT/s, and must strictly follow the rules below in PCB Layout:



- The differential signal pair lines shall be parallel and equal in length;
- The differential signal pair lines shall be short if possible and be controlled within 7 inch (177.8 mm) for AP end;
- The impedance of differential pair lines is recommended to be  $85\Omega$ . All the impedance of differential pair should meet PCle Gen3 protocol requirement of 70 to  $100\Omega$ ;
- It shall avoid the discontinuous reference ground, such as segment and space;
- When the differential signal lines go through different layers, the via hole of grounding signal should be in close to that of signal, and generally, each pair of signals require 1-3 grounding signal via holes and the lines shall never cross the segment of plane;
- Try to avoid bended lines and avoid introducing common-mode noise in the system, which will influence the signal integrity and EMI of difference pair. As shown in Figure 3-14, the bending angle of all lines should be equal or greater than 135°, the spacing between difference pair lines should be larger than 20mil, and the line caused by bending should be greater than 1.5 times line width at least. When a serpentine line is used for length match with another line, the bended length of each segment shall be at least 3 times the line width (≥ 3W). The largest spacing between the bended part of the serpentine line and another one of the differential lines must be less than 2 times the spacing of normal differential lines (S1 < 2S);

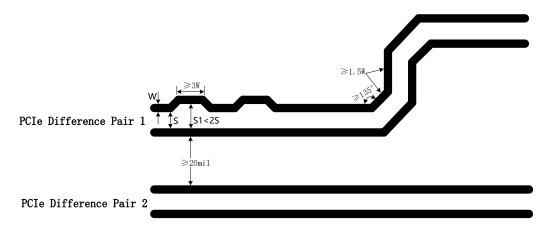



Figure 3-14 Requirement of PCIe line

• The difference in length of two data lines in difference pair should be within 5mil, and the length match is required for all parts. When the length match is conducted for the differential lines, the designed position of correct match should be close to that of incorrect match, as shown in Figure 3-15. However, there is no specific requirements for the length match of transmit pair and receiving pair, which means the length match is only required by intra differential pair rather than inter differential pair.



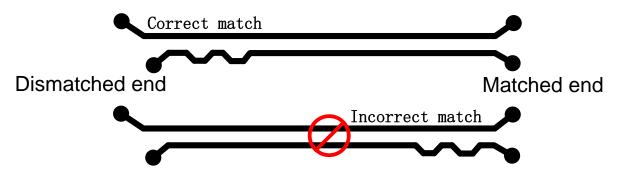



Figure 3-15 Length match design of PCIe difference pair

## 3.5 USIM Interface

The FM350 module supports dual SIM, one is a built-in eSIM and another is a SIM card interface. The SIM interface supports 1.8V and 3V SIM cards.

### **3.5.1 USIM Pins**

The USIM1 pins description is shown in the following table:

| Pin | Pin Name   | 1/0 | Reset Value | Description                                                                                                                                       | Level   |
|-----|------------|-----|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 36  | UIM_PWR    | РО  | -           | USIM power supply                                                                                                                                 | 1.8V/3V |
| 30  | UIM_RESET  | 0   | PD          | USIM reset                                                                                                                                        | 1.8V/3V |
| 32  | UIM_CLK    | 0   | PD          | USIM clock                                                                                                                                        | 1.8V/3V |
| 34  | UIM_DATA   | I/O | PD          | USIM data, internal pull up(4.7KΩ)                                                                                                                | 1.8V/3V |
| 66  | SIM_DETECT | I   | PD          | USIM card detect, internal 390K pullup. Active high, and high level indicates SIM card is inserted; and low level indicates SIM card is detached. | 1.8V    |

# 3.5.2 USIM Interface Circuit

#### 3.5.2.1 N.C. SIM Card Slot

The reference circuit design for N.C. (Normally Closed) SIM card slot is shown in Figure 3-16:

FM350-GL Hardware Guide Page 36 of 67



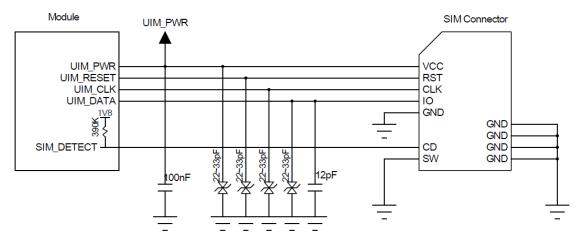



Figure 3-16 Reference circuit for N.C. SIM card slot

The principles of the N.C.SIM card slot are described as follows:

- When the SIM card is detached, it connects the short circuit between CD and SW pins, and drives the SIM\_DETECT pin low.
- When the SIM card is inserted, it connects an open circuit between CD and SW pins, and drives the SIM DETECT pin high.

#### 3.5.2.2 N.O. SIM Card Slot

The reference circuit design for N.O. (Normally Open) SIM card slot is shown in Figure 3-17:

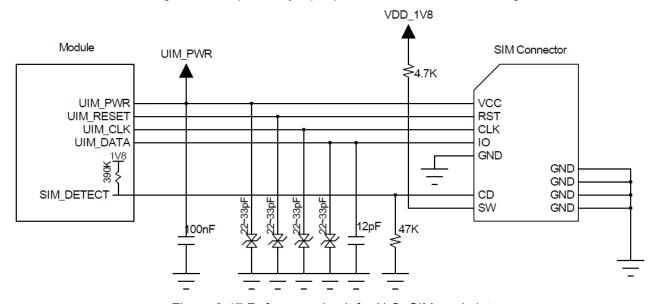



Figure 3-17 Reference circuit for N.O. SIM card slot

The principles of the N.O.SIM card slot are described as follows:

- When the SIM card is detached, it connects an open circuit between CD and SW pins, and drives the SIM DETECT pin low.
- When the SIM card is inserted, it connects the short circuit between CD and SW pins, and drives the SIM DETECT pin high.

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All Rights Reserved.

FM350-GL Hardware Guide Page 37 of 67



#### 3.5.3 USIM Hot-plug

The FM350 module supports the SIM card hot-plugging function, which determines whether the SIM card is inserted or detached by detecting the SIM\_DETECT pin state of the SIM card slot.

The SIM card hot-plugging function can be configured by "AT+MSMPD" command, and the description for AT command is shown in the following table:

| Hot-plug Detection | Function Description                                           |
|--------------------|----------------------------------------------------------------|
|                    | Default value, the SIM card hot-plugging detection function is |
| Enable             | enabled.                                                       |
| Enable             | The module can detect whether the SIM card is inserted or not  |
|                    | through the SIM_DETECT pin state.                              |
|                    | The SIM card hot-plugging detect function is disabled.         |
| AT+MSMPD=0 Disable | The module reads the SIM card when starting up, and the        |
|                    | SIM_DETECT status will not be detected.                        |
|                    | Enable                                                         |



#### Note:

SIM\_DETECT is active high, it can be swapped to active low by AT CMD.

#### 3.5.4 USIM Design

The SIM card circuit design should meet the EMC standards and ESD requirements with the improved capability to resist interference, to ensure that the SIM card can work stably. The following guidelines should be noted in design:

- The SIM card slot should be placed as close as possible to the module, and away from the RF antenna,
   DC/DC power supply, clock signal lines, and other strong interference sources.
- The SIM card slot with a metal shielding housing can improve the anti-interference ability.
- In order to make sure the SIM work stably, the SIM signal quality MUST meet SIM standards "ETSI TS 102.221 Physical and logical characteristics". If the trace length of the SIM card signal is controlled less than 100mm, it will be easier to meet to the SIM signal specification.
- The trace length between the SIM card slot and the module should not exceed 100mm, or it could reduce the signal quality.
- The UIM\_CLK and UIM\_DATA signal lines should be isolated by GND to avoid crosstalk interference.
   If it is difficult for the layout, the whole SIM signal lines should be wrapped with GND as a group at least.
- The filter capacitors and ESD devices for SIM card signals should be placed near to the SIM card slot, and the ESD devices with 22 to 33pF capacitance should be used.

FM350-GL Hardware Guide Page 38 of 67



#### 3.6 Status Indicator

The FM350 module provides two signals to indicate the operating status of the module, and the status indicator pins is shown in the following table:

| Pin | Pin Name | 1/0 | Reset Value | Pin Description                  | Level |
|-----|----------|-----|-------------|----------------------------------|-------|
| 10  | LED1#    | 0   | Т           | System status LED, drain output. | 3.3V  |
| 23  | WOWWAN#  | 0   | PD          | Wake up host, Reserved           | 1.8V  |

### 3.6.1 LED#1 Signal

The LED#1 signal is used to indicate the operating status of the module, and the detailed description is shown in the following table:

| Module Status   | LED1# Signal         |
|-----------------|----------------------|
| RF function ON  | Low level (LED On)   |
| RF function OFF | High level (LED Off) |

The LED driving circuit is shown in figure 3-18:

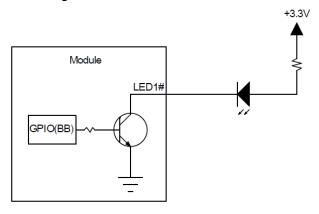



Figure 3-18 LED driving circuit



#### Note:

The resistance of LED current-limiting resistor is selected according to the driving voltage and the driving current.

FM350-GL Hardware Guide Page 39 of 67



#### 3.6.2 WOWWAN#

The WOWWAN# signal is used to wake the Host (AP) when there comes the data request. The definition of WOWWAN# signal is as follows:

| Operating Mode       | WOWWAN# Signal                             |
|----------------------|--------------------------------------------|
| SMS or data requests | Pull low 1s then pull high (pulse signal). |
| Idle/Sleep           | High level                                 |

The WOWWAN# timing is shown in Figure 3-19:

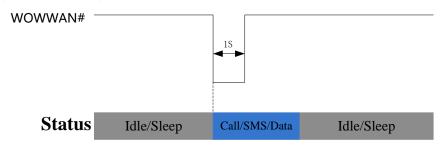



Figure 3-19 WOWWAN# timing



#### Note

WOWWAN# is disabled in default, it can be enabled by AT CMD: AT+GTWAKE=1 and restart module.

## 3.7 Interrupt Control

The FM350 module provides four interrupt signals, and the pin definition is as follows:

| Pin | Pin Name    | 1/0 | Reset<br>Value | Pin Description                                                        | Level    |
|-----|-------------|-----|----------------|------------------------------------------------------------------------|----------|
| 8   | W_DISABLE1# | I   | PD             | Enable/Disable RF network                                              | 3.3/1.8V |
| 25  | DPR         | ı   | PD             | Dynamic Power Reduction - Body<br>SAR control signal<br>(SAR_BACK_OFF) | 3.3/1.8V |
| 26  | W_DISABLE2# | I   | PD             | GNSS Disable signal<br>Reserved                                        | 3.3/1.8V |



#### 3.7.1 W\_DISABLE1#

The module provides a hardware pin to enable/disable WWAN RF function, and the function can also be controlled by the AT command. The module enters the flight mode after the RF function is disabled. The definition of W\_DISABLE1# signal is as below table:

| W_DISABLE1# signal | Function                                                    |
|--------------------|-------------------------------------------------------------|
| High/Floating      | WWAN function is enabled, the module exits the flight mode. |
| Low                | WWAN function is disabled, the module enters flight mode.   |



#### Note:

The function of W\_DISABLE1# is disabled in default, it can be enabled by AT CMD: AT+GTFMODE=1 and restart module.

#### 3.7.2 BODYSAR

The FM350 module supports Body SAR function by detecting the DPR pin. The voltage level of DPR is high by default, and when the SAR sensor detects the closing human body, the DPR signal will be pulled down. As the result, the module then lowers down its emission power to its default threshold value, thus reducing the RF radiation on the human body. The threshold of emission power can be set by the AT Commands. The definition of DPR signal is shown in the following table:

| DPR signal    | Function                                                               |  |
|---------------|------------------------------------------------------------------------|--|
| High/Floating | The module keeps the default emission power                            |  |
| Low           | Lower the maximum emission power to the threshold value of the module. |  |

### 3.8 ANT Tunable Interface

The module supports ANT Tunable interfaces with two different control modes, i.e. MIPI interface and 4bit GPO interface. Through cooperating with external antenna adapter switch via ANT tunable, it can flexibly configure the bands of LTE antenna to improve the antenna's working efficiency and save space for the antenna. Module also support 1.8V output for antenna tuner. The pin definition is as below table:

| Pin | Pin Name      | 1/0 | Pin Description                                                | Level |
|-----|---------------|-----|----------------------------------------------------------------|-------|
| 24  | ANT_TUNER_1V8 | 0   | 1.8V power output for antenna tuner, can mux as GPIO. Reserved | 1.8V  |
| 56  | RFFE_SCLK     | 0   | Tunable ANT control, MIPI Interface, RFFE clock                | 1.8V  |
| 58  | RFFE_SDATA    | I/O | Tunable ANT control, MIPI Interface,<br>RFFE data              | 1.8V  |



| Pin | Pin Name | 1/0 | Pin Description                             | Level |
|-----|----------|-----|---------------------------------------------|-------|
| 59  | ANTCTL0  | 0   | Tunable ANT control, GPO interface,<br>Bit0 | 1.8V  |
| 61  | ANTCTL1  | 0   | Tunable ANT control, GPO interface, bit1    | 1.8V  |
| 63  | ANTCTL2  | 0   | Tunable ANT control, GPO interface,<br>Bit2 | 1.8V  |
| 65  | ANTCTL3  | 0   | Tunable ANT control, GPO interface,<br>Bit3 | 1.8V  |

## 3.9 Configuration Interface

The FM350 module provides four pins for the configuration as the WWAN-PCle, type M.2 module:

| Pin | Pin Name | 1/0 | Reset Value | Pin Description             | Level |
|-----|----------|-----|-------------|-----------------------------|-------|
| 1   | CONFIG_3 | 0   | -           | NC                          | -     |
| 21  | CONFIG_0 | 0   | -           | NC                          | -     |
| 69  | CONFIG_1 | 0   | L           | Internally connected to GND | -     |
| 75  | CONFIG_2 | 0   | -           | NC                          | -     |

The M.2 module configuration is the following table:

| Config_0 (pin21) | Config_1<br>(pin69) | Config_2<br>(pin75) | Config_3<br>(pin1) | Module Type and  Main Host Interface | Port Configuration |
|------------------|---------------------|---------------------|--------------------|--------------------------------------|--------------------|
| NC               | GND                 | NC                  | NC                 | WWAN-PCIe Gen3, USB3.1<br>Gen1       | Vendor defined     |

Please refer to "PCI Express M.2 Specification Rev1.2" for more details.

FM350-GL Hardware Guide Page 42 of 67



# 4 Radio Frequency

### 4.1 RF Interface

### 4.1.1 RF Interface Functionality

The FM350 module supports four RF connectors used for external antenna connection. As the Figure 4-1 shows, "M" is for Main antenna, used to receive and transmit RF signals, "D/G" is for Diversity antenna, used to receive the diversity RF signals. "M1" and "M2" are used for supporting 4x4 MIMO data transfer.

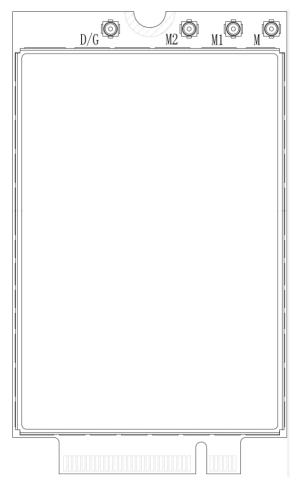



Figure 4-1 RF connectors

#### 4.1.2 RF Connector Characteristic

| Rated Condition          |         | Environment Condition             |
|--------------------------|---------|-----------------------------------|
| Frequency Range          | DC~6GHz | Temperature Range: –40°C to +85°C |
| Characteristic Impedance | 50Ω     | Temperature Mange40 C to 405 C    |

FM350-GL Hardware Guide Page 43 of 67



#### 4.1.3 RF Connector Dimension

FM350 module uses standard M.2 RF connectors. The RF connector part number is 818004607 manufactured by ECT Corporation, and the connector size is 2x2x0.6m. The connector dimension is shown as following picture:

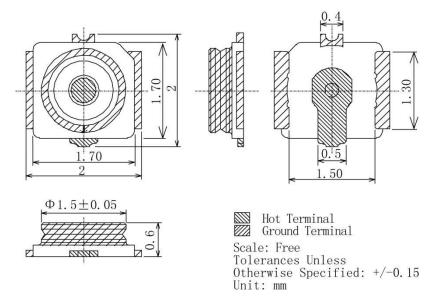



Figure 4-2 RF connector dimensions



Figure 4-3 0.81mm coaxial antenna dimensions



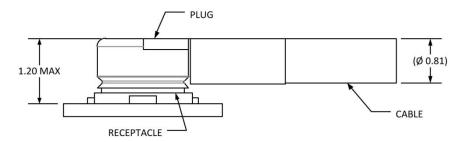



Figure 4-4 Schematic diagram of 0.81mm coaxial antenna connected to the RF connector

### 4.1.4 RF Connector Assembly

Mate RF connector parallel refer Figure 4-5, do not slant mate with strong force.

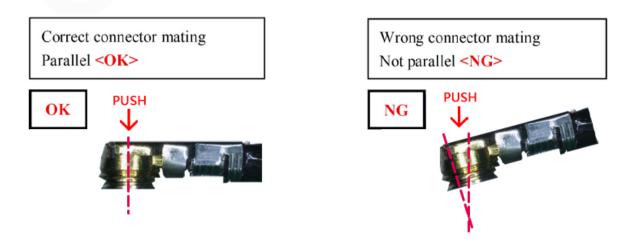



Figure 4-5 Mate RF connector

To avoid damage in RF connector unmating, it is recommended using pulling JIG as Figure 4-6, and the pulling JIG must be lifted up vertically to PCB surface (see Figure 4-7 and 4-8).

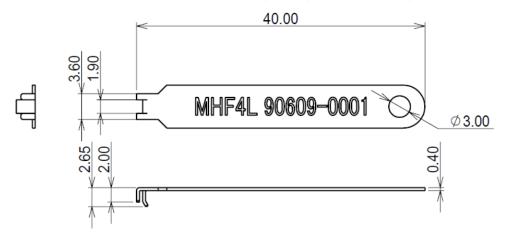



Figure 4-6 Pulling JIG



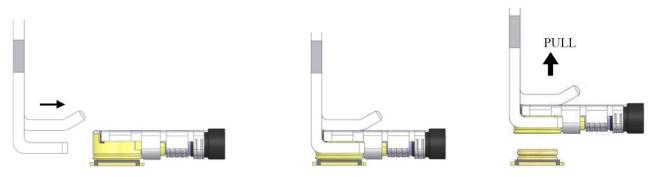



Figure 4-7 Lift up pulling JIG

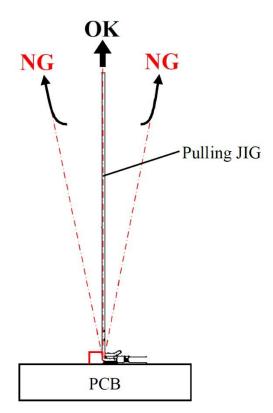



Figure 4-8 Pulling direction

FM350-GL Hardware Guide Page 46 of 67



## 4.2 Operating Band

The FM350 module operating bands of the antennas are shown in the following table:

| Operating Band | Description | RAT           | TX (MHz)    | RX (MHz)    |
|----------------|-------------|---------------|-------------|-------------|
| Band 1         | 2100MHz     | LTE FDD/WCDMA | 1920 - 1980 | 2110 - 2170 |
| Band 2         | 1900MHz     | LTE FDD/WCDMA | 1850 - 1910 | 1930 - 1990 |
| Band 3         | 1800MHz     | LTE FDD       | 1710 - 1785 | 1805 - 1880 |
| Band 4         | 1700MHz     | LTE FDD/WCDMA | 1710 - 1755 | 2110 - 2155 |
| Band 5         | 850MHz      | LTE FDD/WCDMA | 824 - 849   | 869 - 894   |
| Band 7         | 2600Mhz     | LTE FDD       | 2500 - 2570 | 2620 - 2690 |
| Band 8         | 900MHz      | LTE FDD/WCDMA | 880 - 915   | 925 - 960   |
| Band 12        | 700MHz      | LTE FDD       | 699 - 716   | 729 - 746   |
| Band 13        | 700MHz      | LTE FDD       | 777 - 787   | 746 - 756   |
| Band 14        | 700MHz      | LTE FDD       | 788 - 798   | 758 - 768   |
| Band 17        | 700MHz      | LTE FDD       | 704 - 716   | 734 - 746   |
| Band 18        | 800MHz      | LTE FDD       | 815 - 830   | 860 - 875   |
| Band 19        | 850MHz      | LTE FDD       | 830 - 845   | 875 - 890   |
| Band 20        | 800MHz      | LTE FDD       | 832 - 862   | 791 - 821   |
| Band 25        | 1900MHz     | LTE FDD       | 1850 - 1915 | 1930 - 1995 |
| Band 26        | 850MHz      | LTE FDD       | 814 - 849   | 859 - 894   |
| Band 28        | 700MHz      | LTE FDD       | 703 - 748   | 758 - 803   |
| Band 29        | 700MHz      | LTE FDD       | -           | 717 - 728   |
| Band 30        | 2300MHz     | LTE FDD       | 2305 - 2315 | 2350 - 2360 |
| Band 32        | 1500MHz     | LTE FDD       | -           | 1452 - 1496 |
| Band 34        | 2000MHz     | LTE TDD       | 2010 -2025  | 1           |
| Band 38        | 2600MHz     | LTE TDD       | 2570 - 2620 |             |
| Band 39        | 1900MHZ     | LTE TDD       | 1880 - 1920 |             |
| Band 40        | 2300MHz     | LTE TDD       | 2300 - 2400 |             |
| Band 41        | 2500MHz     | LTE TDD       | 2496 - 2690 |             |
| Band 42        | 3500MHZ     | LTE TDD       | 3400 - 3600 |             |

FM350-GL Hardware Guide Page 47 of 67



| Operating Band | Description | RAT     | TX (MHz)    | RX (MHz)       |
|----------------|-------------|---------|-------------|----------------|
| Band 43        | 3700MHz     | LTE TDD | 3600 - 3800 |                |
| Band 46        | 5200MHZ     | LTE TDD | -           | 5150 - 5925    |
| Band 48        | 3600MHz     | LTE TDD | 3550 – 3700 |                |
| Band 66        | 1700MHz     | LTE FDD | 1710 - 1780 | 2110 - 2200    |
| Band 71        | 600MHz      | LTE FDD | 663 -698    | 617 - 652      |
| n1             | 2100MHz     | NR FDD  | 1920 - 1980 | 2110 - 2170    |
| n2             | 1900MHz     | NR FDD  | 1850 - 1910 | 1930 - 1990    |
| n3             | 1800MHz     | NR FDD  | 1710 - 1785 | 1805 - 1880    |
| n5             | 850MHz      | NR FDD  | 824 - 849   | 869 - 894      |
| n7             | 2600Mhz     | NR FDD  | 2500 - 2570 | 2620 - 2690    |
| n8             | 900MHz      | NR FDD  | 880 - 915   | 925 - 960      |
| n20            | 800MHz      | NR FDD  | 832 - 862   | 791 - 821      |
| n25            | 1900MHz     | NR FDD  | 1850 - 1915 | 1930 - 1995    |
| n28            | 700MHz      | NR FDD  | 703 - 748   | 758 - 803      |
| n30            | 2300MHz     | NR FDD  | 2305 - 2315 | 2350 - 2360    |
| n38            | 2600MHz     | NR TDD  | 2570 - 2620 |                |
| n40            | 2300MHz     | NR TDD  | 2300 - 2400 |                |
| n41            | 2500MHz     | NR TDD  | 2496 - 2690 |                |
| n48            | 3500MHz     | NR TDD  | 3550 - 3700 |                |
| n66            | 1700MHz     | NR FDD  | 1710 - 1780 | 2110 - 2200    |
| n71            | 600MHz      | NR FDD  | 663 - 698   | 617 - 652      |
| n77            |             | NR TDD  | 3300 - 4200 | 1              |
| n78            |             | NR TDD  | 3300 - 3800 |                |
| n79            |             | NR TDD  | 4400 - 5000 |                |
| GPS L1         | -           | -       | -           | 1575.42±1.023  |
| GLONASS G1     | -           | -       | -           | 1602.5625±4    |
| Galileo E1     | -           | -       | -           | 1575.42±2.046  |
| BDS B1         | -           | -       | -           | 1561.098±2.046 |

FM350-GL Hardware Guide Page 48 of 67



## 4.3 Transmitting Power

The transmitting power for each band of the FM350 module is shown in the following table:

| RAT   | Band    | 3GPP Requirement (dBm) | Tx Power (dBm) | Note                  |
|-------|---------|------------------------|----------------|-----------------------|
|       | Band 1  | 24+1.7/-3.7            | 23.5±1         | -                     |
|       | Band 2  | 24+1.7/-3.7            | 23.5±1         | -                     |
| WCDMA | Band 4  | 24+1.7/-3.7            | 23.5±1         | -                     |
|       | Band 5  | 24+1.7/-3.7            | 23.5+2/-1      | -                     |
|       | Band 8  | 24+1.7/-3.7            | 23.5+2/-1      | -                     |
|       | Band 1  | 23±2.7                 | 23±1           | 10MHz Bandwidth, 1 RB |
|       | Band 2  | 23±2.7                 | 23±1           | 10MHz Bandwidth, 1 RB |
|       | Band 3  | 23±2.7                 | 23±1           | 10MHz Bandwidth, 1 RB |
|       | Band 4  | 23±2.7                 | 23±1           | 10MHz Bandwidth, 1 RB |
|       | Band 5  | 23±2.7                 | 23+2/-1        | 10MHz Bandwidth, 1 RB |
|       | Band 7  | 23±2.7                 | 23±1           | 10MHz Bandwidth, 1 RB |
|       | Band 8  | 23±2.7                 | 23+2/-1        | 10MHz Bandwidth, 1 RB |
|       | Band 12 | 23±2.7                 | 23+2/-1        | 10MHz Bandwidth, 1 RB |
|       | Band 13 | 23±2.7                 | 23+2/-1        | 10MHz Bandwidth, 1 RB |
|       | Band 14 | 23±2.7                 | 23+2/-1        | 10MHz Bandwidth, 1 RB |
| LTE   | Band 17 | 23±2.7                 | 23+2/-1        | 10MHz Bandwidth, 1 RB |
|       | Band 18 | 23±2.7                 | 23+2/-1        | 10MHz Bandwidth, 1 RB |
|       | Band 19 | 23±2.7                 | 23+2/-1        | 10MHz Bandwidth, 1 RB |
|       | Band 20 | 23±2.7                 | 23+2/-1        | 10MHz Bandwidth, 1 RB |
|       | Band 25 | 23±2.7                 | 23±1           | 10MHz Bandwidth, 1 RB |
|       | Band 26 | 23±2.7                 | 23+2/-1        | 10MHz Bandwidth, 1 RB |
|       | Band 28 | 23+2.7/-3.2            | 23+2/-1        | 10MHz Bandwidth, 1 RB |
|       | Band 30 | 23±2.7                 | 22±1           | 10MHz Bandwidth, 1 RB |
|       | Band 34 | 23±2.7                 | 23±1           | 10MHz Bandwidth, 1 RB |
|       | Band 38 | 23±2.7                 | 23±1           | 10MHz Bandwidth, 1 RB |
|       | Band 39 | 23±2.7                 | 23±1           | 10MHz Bandwidth, 1 RB |

FM350-GL Hardware Guide Page 49 of 67



| Band    | 3GPP Requirement (dBm)                                                                                                    | Tx Power (dBm)                                                                                                                                                                                                                                                                                                                                          | Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Band 40 | 23±2.7                                                                                                                    | 23±1                                                                                                                                                                                                                                                                                                                                                    | 10MHz Bandwidth, 1 RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Band 41 | 26±2.7                                                                                                                    | 26±1                                                                                                                                                                                                                                                                                                                                                    | 10MHz Bandwidth, 1 RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Band 42 | 23+3/-4                                                                                                                   | 23±1                                                                                                                                                                                                                                                                                                                                                    | 10MHz Bandwidth, 1 RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Band 43 | 23+3/-4                                                                                                                   | 23±1                                                                                                                                                                                                                                                                                                                                                    | 10MHz Bandwidth, 1 RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Band 48 | 23+3/-4                                                                                                                   | 21±1                                                                                                                                                                                                                                                                                                                                                    | 10MHz Bandwidth, 1 RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Band 66 | 23±2.7                                                                                                                    | 23±1                                                                                                                                                                                                                                                                                                                                                    | 10MHz Bandwidth, 1 RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Band 71 | 23+2.7/-3.2                                                                                                               | 23+2/-1                                                                                                                                                                                                                                                                                                                                                 | 10MHz Bandwidth, 1 RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| n1      | 23±2.7                                                                                                                    | 23±1                                                                                                                                                                                                                                                                                                                                                    | 15MHz BW, Inner RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| n2      | 23±2.7                                                                                                                    | 23±1                                                                                                                                                                                                                                                                                                                                                    | 15MHz BW, Inner RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| n3      | 23±2.7                                                                                                                    | 23±1                                                                                                                                                                                                                                                                                                                                                    | 20MHz BW, Inner RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| n5      | 23±2.7                                                                                                                    | 23+2/-1                                                                                                                                                                                                                                                                                                                                                 | 15MHz BW, Inner RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| n7      | 23±2.7                                                                                                                    | 23±1                                                                                                                                                                                                                                                                                                                                                    | 15MHz BW, Inner RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| n8      | 23±2.7                                                                                                                    | 23+2/-1                                                                                                                                                                                                                                                                                                                                                 | 15MHz BW, Inner RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| n20     | 23±2.7                                                                                                                    | 23+2/-1                                                                                                                                                                                                                                                                                                                                                 | 15MHz BW, Inner RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| n25     | 23±2.7                                                                                                                    | 23±1                                                                                                                                                                                                                                                                                                                                                    | 15MHz BW, Inner RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| n28     | 23+2.7/-3.2                                                                                                               | 23+2/-1                                                                                                                                                                                                                                                                                                                                                 | 15MHz BW, Inner RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| n30     | 23±2.7                                                                                                                    | 22±1                                                                                                                                                                                                                                                                                                                                                    | 10MHz BW, Inner RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| n38     | 23±2.7                                                                                                                    | 23±1                                                                                                                                                                                                                                                                                                                                                    | 15MHz BW, Inner RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| n40     | 23±2.7                                                                                                                    | 23±1                                                                                                                                                                                                                                                                                                                                                    | 15MHz BW, Inner RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| n41     | 26+2.7/-3.7                                                                                                               | 26±1                                                                                                                                                                                                                                                                                                                                                    | 60MHz BW, Inner RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| n48     | 23+3/-4                                                                                                                   | 21±1                                                                                                                                                                                                                                                                                                                                                    | 20MHz BW, Inner RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| n66     | 23±2.7                                                                                                                    | 23±1                                                                                                                                                                                                                                                                                                                                                    | 20MHz BW, Inner RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| n71     | 23+2.7/-3.2                                                                                                               | 23+2/-1                                                                                                                                                                                                                                                                                                                                                 | 10MHz BW, Inner RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| n77     | 26+3/-4                                                                                                                   | 25±1                                                                                                                                                                                                                                                                                                                                                    | 50MHz BW, Inner RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| n78     | 26+3/-4                                                                                                                   | 26±1                                                                                                                                                                                                                                                                                                                                                    | 50MHz BW, Inner RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| n79     | 26+3/-4                                                                                                                   | 26±1                                                                                                                                                                                                                                                                                                                                                    | 60MHz BW, Inner RB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | Band 40 Band 41 Band 42 Band 43 Band 48 Band 66 Band 71 n1 n2 n3 n5 n7 n8 n20 n25 n28 n30 n38 n40 n41 n48 n66 n71 n77 n78 | Band 40 23±2.7  Band 41 26±2.7  Band 42 23+3/-4  Band 43 23+3/-4  Band 48 23+3/-4  Band 66 23±2.7  Band 71 23±2.7  n1 23±2.7  n2 23±2.7  n3 23±2.7  n6 23±2.7  n7 23±2.7  n8 23±2.7  n8 23±2.7  n20 23±2.7  n25 23±2.7  n28 23+2.7/-3.2  n30 23±2.7  n40 23±2.7  n40 23±2.7  n41 26+2.7/-3.7  n48 23+3/-4  n66 23±2.7  n71 23+2.7/-3.2  n71 23+2.7/-3.2 | Band 40       23±2.7       23±1         Band 41       26±2.7       26±1         Band 42       23+3/-4       23±1         Band 43       23+3/-4       21±1         Band 66       23±2.7       23±1         Band 71       23+2.7/-3.2       23+2/-1         n1       23±2.7       23±1         n2       23±2.7       23±1         n3       23±2.7       23±1         n5       23±2.7       23±1         n8       23±2.7       23±1         n20       23±2.7       23±2/-1         n25       23±2.7       23±1         n28       23+2.7/-3.2       23±2/-1         n30       23±2.7       22±1         n38       23±2.7       23±1         n40       23±2.7       23±1         n41       26+2.7/-3.7       26±1         n48       23+3/-4       21±1         n66       23±2.7       23±1         n71       23+2.7/-3.2       23±1         n77       26+3/-4       25±1         n78       26+3/-4       26±1 |

FM350-GL Hardware Guide Page 50 of 67



## 4.4 Receiver Sensitivity

## 4.4.1 Dual Antenna Receiver Sensitivity

All bands support dual antenna, the receiver sensitivity for each band of FM350 module is shown in the following table:

| RAT     | Band    | 3GPP Requirement (dBm) | RX Sensitivity Typical (dBm) | Note            |
|---------|---------|------------------------|------------------------------|-----------------|
|         | Band 1  | -106.7                 | TBD                          | -               |
|         | Band 2  | -104.7                 | TBD                          | -               |
| WCDMA   | Band 4  | -106.7                 | TBD                          | -               |
|         | Band 5  | -104.7                 | TBD                          | -               |
|         | Band 8  | -103.7                 | TBD                          | -               |
|         | Band 1  | -96.3                  | TBD                          | 10MHz Bandwidth |
|         | Band 2  | -94.3                  | TBD                          | 10MHz Bandwidth |
|         | Band 3  | -93.3                  | TBD                          | 10MHz Bandwidth |
|         | Band 4  | -96.3                  | TBD                          | 10MHz Bandwidth |
|         | Band 5  | -94.3                  | TBD                          | 10MHz Bandwidth |
|         | Band 7  | -94.3                  | TBD                          | 10MHz Bandwidth |
|         | Band 8  | -93.3                  | TBD                          | 10MHz Bandwidth |
|         | Band 12 | -93.3                  | TBD                          | 10MHz Bandwidth |
|         | Band 13 | -93.3                  | TBD                          | 10MHz Bandwidth |
| LTE FDD | Band 14 | -93.3                  | TBD                          | 10MHz Bandwidth |
|         | Band 17 | -93.3                  | TBD                          | 10MHz Bandwidth |
|         | Band 18 | -96.3                  | TBD                          | 10MHz Bandwidth |
|         | Band 19 | -96.3                  | TBD                          | 10MHz Bandwidth |
|         | Band 20 | -93.3                  | TBD                          | 10MHz Bandwidth |
|         | Band 25 | -92.8                  | TBD                          | 10MHz Bandwidth |
|         | Band 26 | -93.8                  | TBD                          | 10MHz Bandwidth |
|         | Band 28 | -94.8                  | TBD                          | 10MHz Bandwidth |
|         | Band 29 | -93.3                  | TBD                          | 10MHz Bandwidth |
|         | Band 30 | -95.3                  | TBD                          | 10MHz Bandwidth |



| RAT     | Band    | 3GPP Requirement (dBm) | RX Sensitivity Typical (dBm) | Note               |
|---------|---------|------------------------|------------------------------|--------------------|
|         | Band 32 | -96.3                  | TBD                          | 10MHz Bandwidth    |
|         | Band 46 | -88.5                  | TBD                          | 20MHz Bandwidth    |
|         | Band 66 | -95.8                  | TBD                          | 10MHz Bandwidth    |
|         | Band 71 | -93.5                  | TBD                          | 10MHz Bandwidth    |
|         | Band 34 | -96.3                  | TBD                          | 10MHz Bandwidth    |
|         | Band 38 | -96.3                  | TBD                          | 10MHz Bandwidth    |
|         | Band 39 | -96.3                  | TBD                          | 10MHz Bandwidth    |
| LTE TDD | Band 40 | -96.3                  | TBD                          | 10MHz Bandwidth    |
|         | Band 41 | -94.3                  | TBD                          | 10MHz Bandwidth    |
|         | Band 42 | -95                    | TBD                          | 10MHz Bandwidth    |
|         | Band 43 | -95                    | TBD                          | 10MHz Bandwidth    |
|         | Band 48 | -95                    | TBD                          | 10MHz Bandwidth    |
|         | n1      | -94.3                  | TBD                          | SCS 15KHz 15MHz BW |
|         | n2      | -92.3                  | TBD                          | SCS 15KHz 15MHz BW |
|         | n3      | -90.1                  | TBD                          | SCS 15KHz 20MHz BW |
|         | n5      | -92.3                  | TBD                          | SCS 15KHz 15MHz BW |
|         | n7      | -92.3                  | TBD                          | SCS 15KHz 15MHz BW |
|         | n8      | -91.3                  | TBD                          | SCS 15KHz 15MHz BW |
|         | n20     | -90.3                  | TBD                          | SCS 15KHz 15MHz BW |
| NR      | n25     | -90.8                  | TBD                          | SCS 15KHz 15MHz BW |
| INK     | n28     | -92.8                  | TBD                          | SCS 15KHz 15MHz BW |
|         | n30     | -95.1                  | TBD                          | SCS 15KHz 10MHz BW |
|         | n38     | -94.4                  | TBD                          | SCS 30KHz 15MHz BW |
|         | n40     | -91.3                  | TBD                          | SCS 30KHz 30MHz BW |
|         | n41     | -86.2                  | TBD                          | SCS 30KHz 60MHz BW |
|         | n48     | -91.9                  | TBD                          | SCS 30KHz 20MHz BW |
|         | n66     | -92.6                  | TBD                          | SCS 15KHz 20MHz BW |
|         | n71     | -90.9                  | TBD                          | SCS 15KHz 10MHz BW |



| RAT | Band | 3GPP Requirement (dBm) | RX Sensitivity Typical (dBm) | Note               |
|-----|------|------------------------|------------------------------|--------------------|
|     | n77  | -87.2                  | TBD                          | SCS 30KHz 50MHz BW |
|     | n78  | -87.7                  | TBD                          | SCS 30KHz 50MHz BW |
|     | n79  | -86.9                  | TBD                          | SCS 30KHz 60MHz BW |



#### Note:

- 1. The above values are measured in dual antennas condition (Main+Diversity). For single main antenna (without Diversity), the sensitivity will drop around 3dBm for each band.
- 2. B29 dual antenna receiver sensitivity test is at DL CA: CA\_2A-29A
- 3. B32 dual antenna receiver sensitivity test is at DL CA: CA\_20A-32A
- 4. B46 dual antenna receiver sensitivity test is at DL CA: CA\_13A-46A

### 4.4.2 Four Antenna Receiver Sensitivity

Some bands support four antennas, the receiver sensitivity for some bands of FM350 module is shown in below table:

| Mode    | Band    | 3GPP Requirement (dBm) | RX Sensitivity Typical (dBm) | Note            |
|---------|---------|------------------------|------------------------------|-----------------|
|         | Band 1  | -99                    | TBD                          | 10MHz Bandwidth |
|         | Band 2  | -97                    | TBD                          | 10MHz Bandwidth |
|         | Band 3  | -96                    | TBD                          | 10MHz Bandwidth |
| LTE FDD | Band 4  | -99                    | TBD                          | 10MHz Bandwidth |
|         | Band 7  | -97                    | TBD                          | 10MHz Bandwidth |
|         | Band 25 | -95.5                  | TBD                          | 10MHz Bandwidth |
|         | Band 30 | -98                    | TBD                          | 10MHz Bandwidth |
|         | Band 66 | -98.5                  | TBD                          | 10MHz Bandwidth |
|         | Band 34 | -99                    | TBD                          | 10MHz Bandwidth |
|         | Band 38 | -99                    | TBD                          | 10MHz Bandwidth |
|         | Band 39 | -99                    | TBD                          | 10MHz Bandwidth |
| LTE TDD | Band 40 | -99                    | TBD                          | 10MHz Bandwidth |
|         | Band 41 | -97                    | TBD                          | 10MHz Bandwidth |
|         | Band 42 | -97.2                  | TBD                          | 10MHz Bandwidth |
|         | Band 43 | -97.2                  | TBD                          | 10MHz Bandwidth |



| Mode | Band    | 3GPP Requirement (dBm) | RX Sensitivity Typical (dBm) | Note               |
|------|---------|------------------------|------------------------------|--------------------|
|      | Band 48 | -97.2                  | TBD                          | 10MHz Bandwidth    |
|      | n1      | -97                    | TBD                          | SCS 15KHz 15MHz BW |
|      | n2      | -95                    | TBD                          | SCS 15KHz 15MHz BW |
|      | n3      | -92.8                  | TBD                          | SCS 15KHz 20MHz BW |
|      | n7      | -95                    | TBD                          | SCS 15KHz 15MHz BW |
|      | n25     | -93.5                  | TBD                          | SCS 15KHz 15MHz BW |
|      | n30     | -97.8                  | TBD                          | SCS 15KHz 10MHz BW |
| NR   | n38     | -97.1                  | TBD                          | SCS 30KHz 15MHz BW |
| IVIX | n40     | -94                    | TBD                          | SCS 30KHz 30MHz BW |
|      | n41     | -88.9                  | TBD                          | SCS 30KHz 60MHz BW |
|      | n48     | -94.1                  | TBD                          | SCS 30KHz 20MHz BW |
|      | n66     | -95.3                  | TBD                          | SCS 15KHz 20MHz BW |
|      | n77     | -89.4                  | TBD                          | SCS 30KHz 50MHz BW |
|      | n78     | -89.9                  | TBD                          | SCS 30KHz 50MHz BW |
|      | n79     | -89.1                  | TBD                          | SCS 30KHz 60MHz BW |



The above values are measured in four antennas condition (Main+Diversity+M1+M2). If only use dual antennas (Main+Diversity), the sensitivity will drop about 3dBm for each band.

FM350-GL Hardware Guide Page 54 of 67



### **4.5 GNSS**

FM350 module supports GNSS with D/G antenna, the GNSS includes GPS/GLONASS/Galileo/BDS/QZSS. GNSS feature and performance are as below table:

| Description | Condition   | Test Result |         |
|-------------|-------------|-------------|---------|
| Description | Condition   | Max         | Typical |
|             | Fixing      | TBD         | TBD     |
| Current     | Tracking    | TBD         | TBD     |
|             | Sleep       | TBD         | TBD     |
|             | Cold start  | TBD         | TBD     |
| TTFF        | Warm start  | TBD         | TBD     |
|             | Hot Start   | TBD         | TBD     |
| Sensitivity | Tracking    | TBD         | TBD     |
|             | Acquisition | TBD         | TBD     |



#### Note:

GNSS current is tested with RF disabled at 25°C temperature.

FM350-GL Hardware Guide Page 55 of 67



## 4.6 Antenna Design

The FM350 module provides four antenna interfaces, and the antenna design requirements is shown in the following table:

| FM350 Module Main Anter |                                                                 |
|-------------------------|-----------------------------------------------------------------|
| Frequency range         | The most proper antenna to adapt the frequencies should be used |
|                         | WCDMA band 1 (2100): 250MHz                                     |
|                         | WCDMA band 2 (1900): 140MHz                                     |
| Bandwidth(WCDMA)        | WCDMA band 4 (1700): 445MHz                                     |
|                         | WCDMA band 5 (850): 70MHz                                       |
|                         | WCDMA band 8 (900): 80MHz                                       |
|                         | LTE band 1 (2100): 250MHz                                       |
|                         | LTE band 2 (1900): 140MHz                                       |
|                         | LTE Band 3 (1800): 170MHz                                       |
|                         | LTE band 4 (1700): 445MHz                                       |
|                         | LTE band 5 (850): 70MHz                                         |
|                         | LTE band 7 (2600): 190MHz                                       |
|                         | LTE Band 8 (900): 80MHz                                         |
|                         | LTE band 12 (700): 47MHz                                        |
|                         | LTE band 13 (700): 41MHz                                        |
|                         | LTE band 14 (700): 40MHz                                        |
|                         | LTE band 17 (700): 42MHz                                        |
|                         | LTE band 18 (800): 80MHz                                        |
|                         | LTE band 19 (850): 80MHz                                        |
|                         | LTE band 20 (800): 71MHz                                        |
|                         | LTE band 25 (1900): 145MHz                                      |
| Bandwidth(LTE)          | LTE band 26 (850): 80MHz                                        |
|                         | LTE band 28 (700): 100MHz                                       |
|                         | LTE band 29 (700): 11MHz                                        |
|                         | LTE band 30 (2300): 55MHz                                       |
|                         | LTE band 32 (1500): 44MHz                                       |
|                         | LTE band 34 (2000): 15MHz                                       |
|                         | LTE band 38 (2600): 50MHz                                       |
|                         | LTE band 39 (1900): 40MHz                                       |
|                         | LTE band 40 (2300): 100MHz                                      |
|                         | LTE band 41 (2500): 110MHz                                      |
|                         | LTE band 42 (3500): 200MHz                                      |
|                         | LTE band 43 (3700): 200MHz                                      |
|                         | LTE band 46 (5500): 775MHz                                      |
|                         | LTE band 48 (3600): 150MHz                                      |
|                         | LTE band 66 (1700): 490MHz                                      |
|                         | LTE band 71 (600): 81MHz                                        |
|                         | n1 (2100): 250MHz                                               |
| NR                      | n2 (1900): 140MHz                                               |
|                         | n3 (1800): 170MHz                                               |



| FM350 Module Main Antenna Requirement |                                        |  |  |
|---------------------------------------|----------------------------------------|--|--|
|                                       | n5 (850): 70MHz                        |  |  |
|                                       | n7 (2600): 190MHz                      |  |  |
|                                       | n8 (900): 80MHz                        |  |  |
|                                       | n20 (800): 71MHz                       |  |  |
|                                       | n25 (1900): 145MHz                     |  |  |
|                                       | n30 (2300): 55MHz                      |  |  |
|                                       | n28 (700): 100MHz                      |  |  |
|                                       | n38 (2600): 50MHz                      |  |  |
|                                       | n40 (2300): 100MHz                     |  |  |
|                                       | n41 (2500): 110MHz                     |  |  |
|                                       | n66 (1700): 490MHz                     |  |  |
|                                       | n71 (600): 35MHz                       |  |  |
|                                       | n77 (3750): 900MHz                     |  |  |
|                                       | n78 (3500): 500MHz                     |  |  |
|                                       | n79 (5500): 600MHz                     |  |  |
|                                       | GPS: 2MHz                              |  |  |
|                                       | GLONASS: 8MHz                          |  |  |
| Bandwidth(GNSS)                       | Galileo: 8MHz                          |  |  |
|                                       | BDS: 4MHz                              |  |  |
|                                       | QZSS: TBD                              |  |  |
| Impedance                             | 50Ω                                    |  |  |
| Input power                           | > 28dBm average power WCDMA & LTE & NR |  |  |
| Recommended standing-wave ratio (SWR) | ≤ 2:1                                  |  |  |

FM350-GL Hardware Guide Page 57 of 67



## 5 ESD Characteristics

The module is generally not protected against Electrostatic Discharge (ESD). ESD handling precautions that apply to ESD sensitive components should be strictly followed. Proper ESD handling procedures must be applied throughout the processing, handling, assembly and operation of any application with module. The ESD characteristics are shown in the following table (Temperature: 25°C, Relative Humidity: 40%).

| Interface         | Contact Discharge | Air Discharge |
|-------------------|-------------------|---------------|
| GND               | ±8 kV             | ±15 kV        |
| Antenna Interface | ±8 kV             | NA            |
| Golden Finger     | ±2 kV             | NA            |



ESD performance is based on EVB-M2 development board.

FM350-GL Hardware Guide Page 58 of 67



# 6 Structure Specification

## **6.1 Product Appearance**

The product appearance for FM350 module is shown in Figure 6-1:



Figure 6-1 Module appearance

### 6.2 Dimension of Structure

The structural dimension of the FM350 module is shown in Figure 6-2:

FM350-GL Hardware Guide Page 59 of 67



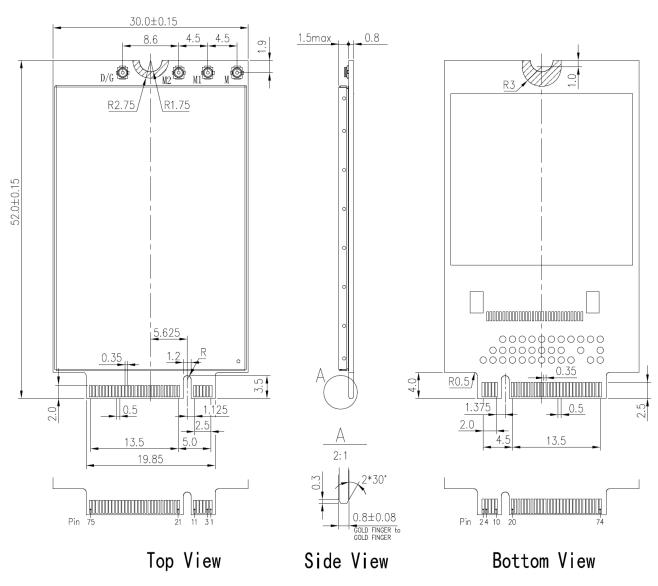



Figure 6-2 Dimension of structure (unit: mm)

### 6.3 M.2 Interface Model

The FM350 M.2 module adopts 75-pin gold finger as external interface, where 67 pins are signal pins and 8 pins are notch pins as shown in <u>Figure 3-1</u>. For module dimension, please refer to <u>Figure 6-2</u> <u>Dimension of Structure</u>. Based on the M.2 interface definition, FM350 module adopts Type 3052-S3-B interface (30x52mm, the component maximum height on t top layer is 1.5mm, PCB thickness is 0.8mm, and KEY ID is B).

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All Rights Reserved.

FM350-GL Hardware Guide Page 60 of 67





 $\boxtimes\boxtimes\boxtimes$  Key G is intended for custom use. Devices with this key will not be M.2-compliant. Use at your own risk!

⊠⊠⊠ Insulating label allowed on connector-based designs

Figure 6-3 M.2 interface model

#### 6.4 M.2 Connector

FM350 module connects with host by M.2 connector which is built in host. The recommended part number is APCI0026-P001A manufactured by LOTES Corporation, and the dimensions is shown in Figure 6-4. For stack-up top-mount single-sided module, the recommended part number is APCI0144-P001A, manufactured by LOTES Corporation, and the dimension is shown in Figure 6-5. The package of connector, please refer to the specification.

Reproduction forbidden without Fibocom Wireless Inc. written authorization - All Rights Reserved.

FM350-GL Hardware Guide Page 61 of 67



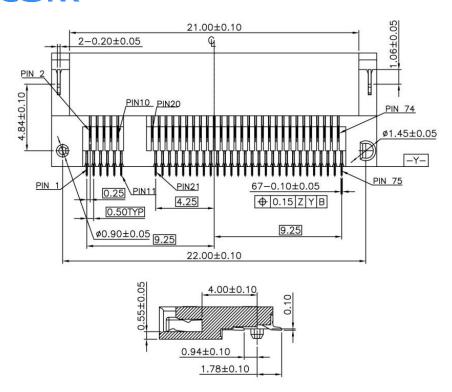



Figure 6-4 M.2 Dimension of structure for stack-up Mid-mount single-sided module

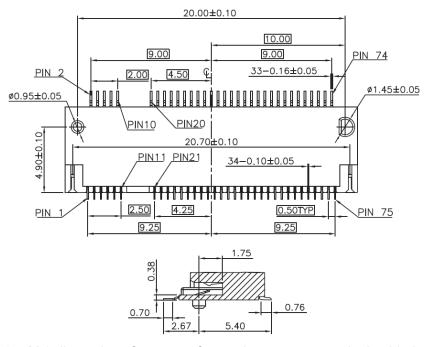



Figure 6-5 M.2 dimension of structure for stack-up top-mount single-sided module



# 6.5 M.2 Card Assembly

#### 6.5.1 Card Insertion

Angled insertion is allowable and preferred; intent is to minimize the insertion and extraction force. The minimum angle of insertion is 5°. For APCI0144-P001A, the maximum angle of insertion is 5°. For APCI0026-P001A, the maximum angle of insertion is 20°. PLS refer to Figure 6-6 and Figure 6-7 to insert and extract the module.




Figure 6-6 Angle of insertion for APCI0144-P001A

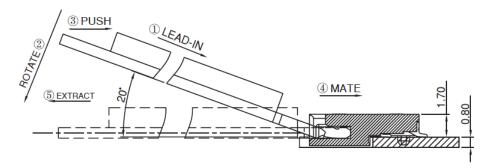



Figure 6-7 Angle of insertion for APCI0026-P001A

FM350-GL Hardware Guide Page 63 of 67



### 6.5.2 Mid-mount Connection with Single-Sided Module

Stack-up Mid-mount (In-line) single-sided module is shown in Figure 6-8. The maximum height of components is 1.5mm.

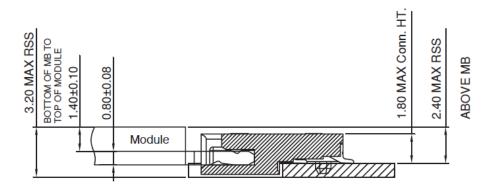



Figure 6-8 Stack-up mid-mount single-sided module



#### Note:

2.4mm maximum above mother board Suggest to cut the area of mother board under M.2 module

### 6.5.3 Top-mount Connection with Single-Sided Module

Stack-up top-mount single-sided module is shown in Figure 6-9. The maximum height of components is 1.5mm.

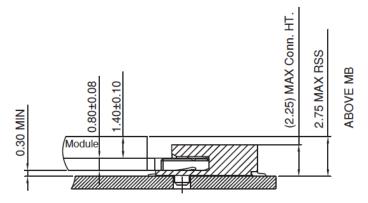



Figure 6-9 Stack-up top-mount single-sided module



#### Note:

2.75mm maximum above mother board

Full keep out area 30×42mm below module, which means don't place any components and routings below M.2 module

Add thermal pad between M.2 module and mother board for thermal dissipation.



## 6.6 Storage

### 6.6.1 Storage Life

Storage Conditions (recommended): Temperature is  $23 \pm 5$ °C, relative humidity is less than RH 60%. Storage period: Under the recommended storage conditions, the storage life is 12 months.

## 6.7 Packing

The FM350 module uses the tray sealed packing, combined with the outer packing method using the hard cartoon box, so that the storage, transportation and the usage of modules can be protected to the greatest extent.



#### Note:

The module is a precision electronic product, and may suffer permanent damage if no correct electrostatic protection measures are taken.

#### 6.7.1 Tray Package

The FM350 module uses tray package, 20 pcs are packed in each tray, with 5 trays including one empty tray on top in each box and 5 boxes in each case. Tray packaging process is shown in Figure 6-10:

FM350-GL Hardware Guide Page 65 of 67



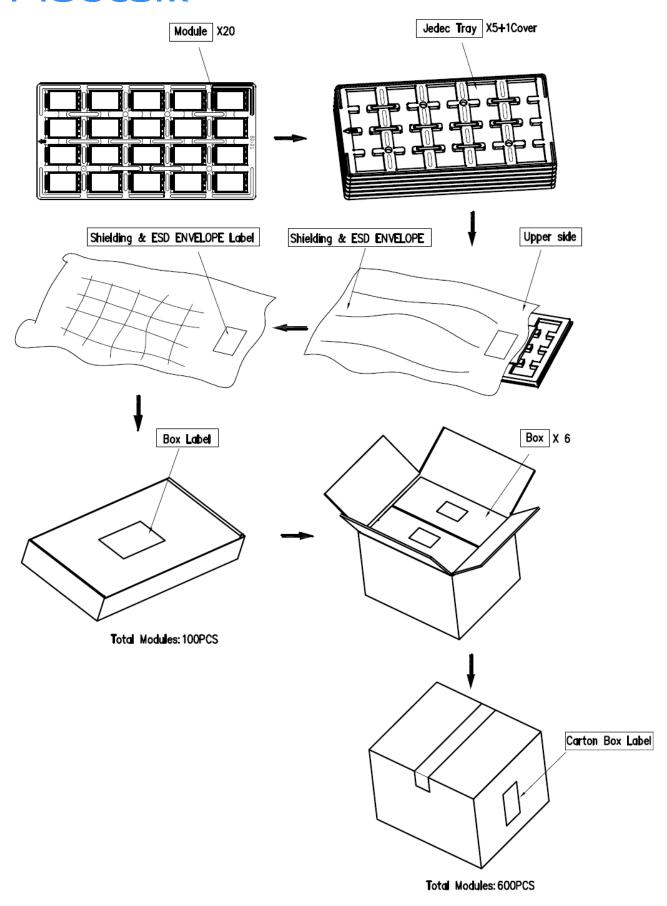



Figure 6-10 Tray packaging process



## 6.7.2 Tray Size

The pallet size is 330x175x6.5mm, and is shown in Figure 6-11:

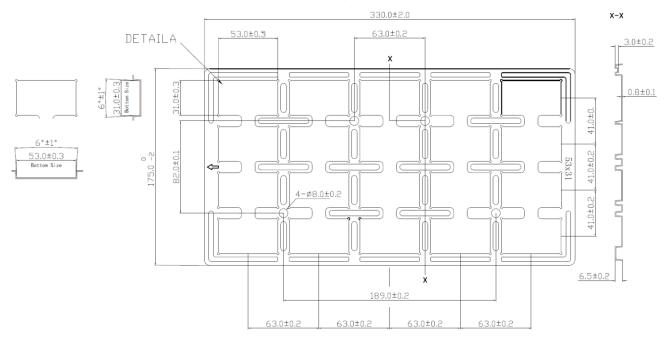



Figure 6-11 Tray size (unit: mm)

FM350-GL Hardware Guide Page 67 of 67